VariationalAutoencoder.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. import tensorflow as tf
  2. import numpy as np
  3. class VariationalAutoencoder(object):
  4. def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()):
  5. self.n_input = n_input
  6. self.n_hidden = n_hidden
  7. network_weights = self._initialize_weights()
  8. self.weights = network_weights
  9. # model
  10. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  11. self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
  12. self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])
  13. # sample from gaussian distribution
  14. eps = tf.random_normal(tf.stack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32)
  15. self.z = tf.add(self.z_mean, tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
  16. self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])
  17. # cost
  18. reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
  19. latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
  20. - tf.square(self.z_mean)
  21. - tf.exp(self.z_log_sigma_sq), 1)
  22. self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
  23. self.optimizer = optimizer.minimize(self.cost)
  24. init = tf.global_variables_initializer()
  25. self.sess = tf.Session()
  26. self.sess.run(init)
  27. def _initialize_weights(self):
  28. all_weights = dict()
  29. all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
  30. initializer=tf.contrib.layers.xavier_initializer())
  31. all_weights['log_sigma_w1'] = tf.get_variable("log_sigma_w1", shape=[self.n_input, self.n_hidden],
  32. initializer=tf.contrib.layers.xavier_initializer())
  33. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  34. all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  35. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  36. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  37. return all_weights
  38. def partial_fit(self, X):
  39. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  40. return cost
  41. def calc_total_cost(self, X):
  42. return self.sess.run(self.cost, feed_dict = {self.x: X})
  43. def transform(self, X):
  44. return self.sess.run(self.z_mean, feed_dict={self.x: X})
  45. def generate(self, hidden = None):
  46. if hidden is None:
  47. hidden = np.random.normal(size=self.weights["b1"])
  48. return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})
  49. def reconstruct(self, X):
  50. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  51. def getWeights(self):
  52. return self.sess.run(self.weights['w1'])
  53. def getBiases(self):
  54. return self.sess.run(self.weights['b1'])