123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Train the cross convolutional model."""
- import os
- import sys
- import numpy as np
- import tensorflow as tf
- import model as cross_conv_model
- import reader
- FLAGS = tf.flags.FLAGS
- tf.flags.DEFINE_string('master', '', 'Session address.')
- tf.flags.DEFINE_string('log_root', '/tmp/moving_obj', 'The root dir of output.')
- tf.flags.DEFINE_string('data_filepattern', '',
- 'training data file pattern.')
- tf.flags.DEFINE_integer('image_size', 64, 'Image height and width.')
- tf.flags.DEFINE_integer('batch_size', 1, 'Batch size.')
- tf.flags.DEFINE_float('norm_scale', 1.0, 'Normalize the original image')
- tf.flags.DEFINE_float('scale', 10.0,
- 'Scale the image after norm_scale and move the diff '
- 'to the positive realm.')
- tf.flags.DEFINE_integer('sequence_length', 2, 'tf.SequenceExample length.')
- tf.flags.DEFINE_float('learning_rate', 0.8, 'Learning rate.')
- tf.flags.DEFINE_bool('l2_loss', True, 'If true, include l2_loss.')
- tf.flags.DEFINE_bool('reconstr_loss', False, 'If true, include reconstr_loss.')
- tf.flags.DEFINE_bool('kl_loss', True, 'If true, include KL loss.')
- slim = tf.contrib.slim
- def _Train():
- params = dict()
- params['batch_size'] = FLAGS.batch_size
- params['seq_len'] = FLAGS.sequence_length
- params['image_size'] = FLAGS.image_size
- params['is_training'] = True
- params['norm_scale'] = FLAGS.norm_scale
- params['scale'] = FLAGS.scale
- params['learning_rate'] = FLAGS.learning_rate
- params['l2_loss'] = FLAGS.l2_loss
- params['reconstr_loss'] = FLAGS.reconstr_loss
- params['kl_loss'] = FLAGS.kl_loss
- train_dir = os.path.join(FLAGS.log_root, 'train')
- images = reader.ReadInput(FLAGS.data_filepattern, shuffle=True, params=params)
- images *= params['scale']
- # Increase the value makes training much faster.
- image_diff_list = reader.SequenceToImageAndDiff(images)
- model = cross_conv_model.CrossConvModel(image_diff_list, params)
- model.Build()
- tf.contrib.tfprof.model_analyzer.print_model_analysis(tf.get_default_graph())
- summary_writer = tf.summary.FileWriter(train_dir)
- sv = tf.train.Supervisor(logdir=FLAGS.log_root,
- summary_op=None,
- is_chief=True,
- save_model_secs=60,
- global_step=model.global_step)
- sess = sv.prepare_or_wait_for_session(
- FLAGS.master, config=tf.ConfigProto(allow_soft_placement=True))
- total_loss = 0.0
- step = 0
- sample_z_mean = np.zeros(model.z_mean.get_shape().as_list())
- sample_z_stddev_log = np.zeros(model.z_stddev_log.get_shape().as_list())
- sample_step = 0
- while True:
- _, loss_val, total_steps, summaries, z_mean, z_stddev_log = sess.run(
- [model.train_op, model.loss, model.global_step,
- model.summary_op,
- model.z_mean, model.z_stddev_log])
- sample_z_mean += z_mean
- sample_z_stddev_log += z_stddev_log
- total_loss += loss_val
- step += 1
- sample_step += 1
- if step % 100 == 0:
- summary_writer.add_summary(summaries, total_steps)
- sys.stderr.write('step: %d, loss: %f\n' %
- (total_steps, total_loss / step))
- total_loss = 0.0
- step = 0
- # Sampled z is used for eval.
- # It seems 10k is better than 1k. Maybe try 100k next?
- if sample_step % 10000 == 0:
- with tf.gfile.Open(os.path.join(FLAGS.log_root, 'z_mean.npy'), 'w') as f:
- np.save(f, sample_z_mean / sample_step)
- with tf.gfile.Open(
- os.path.join(FLAGS.log_root, 'z_stddev_log.npy'), 'w') as f:
- np.save(f, sample_z_stddev_log / sample_step)
- sample_z_mean = np.zeros(model.z_mean.get_shape().as_list())
- sample_z_stddev_log = np.zeros(
- model.z_stddev_log.get_shape().as_list())
- sample_step = 0
- def main(_):
- _Train()
- if __name__ == '__main__':
- tf.app.run()
|