| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Manager class for loading and encoding with multiple skip-thoughts models.
- If multiple models are loaded at once then the encode() function returns the
- concatenation of the outputs of each model.
- Example usage:
- manager = EncoderManager()
- manager.load_model(model_config_1, vocabulary_file_1, embedding_matrix_file_1,
- checkpoint_path_1)
- manager.load_model(model_config_2, vocabulary_file_2, embedding_matrix_file_2,
- checkpoint_path_2)
- encodings = manager.encode(data)
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import collections
- import numpy as np
- import tensorflow as tf
- from skip_thoughts import skip_thoughts_encoder
- class EncoderManager(object):
- """Manager class for loading and encoding with skip-thoughts models."""
- def __init__(self):
- self.encoders = []
- self.sessions = []
- def load_model(self, model_config, vocabulary_file, embedding_matrix_file,
- checkpoint_path):
- """Loads a skip-thoughts model.
- Args:
- model_config: Object containing parameters for building the model.
- vocabulary_file: Path to vocabulary file containing a list of newline-
- separated words where the word id is the corresponding 0-based index in
- the file.
- embedding_matrix_file: Path to a serialized numpy array of shape
- [vocab_size, embedding_dim].
- checkpoint_path: SkipThoughtsModel checkpoint file or a directory
- containing a checkpoint file.
- """
- tf.logging.info("Reading vocabulary from %s", vocabulary_file)
- with tf.gfile.GFile(vocabulary_file, mode="r") as f:
- lines = list(f.readlines())
- reverse_vocab = [line.decode("utf-8").strip() for line in lines]
- tf.logging.info("Loaded vocabulary with %d words.", len(reverse_vocab))
- tf.logging.info("Loading embedding matrix from %s", embedding_matrix_file)
- # Note: tf.gfile.GFile doesn't work here because np.load() calls f.seek()
- # with 3 arguments.
- with open(embedding_matrix_file, "r") as f:
- embedding_matrix = np.load(f)
- tf.logging.info("Loaded embedding matrix with shape %s",
- embedding_matrix.shape)
- word_embeddings = collections.OrderedDict(
- zip(reverse_vocab, embedding_matrix))
- g = tf.Graph()
- with g.as_default():
- encoder = skip_thoughts_encoder.SkipThoughtsEncoder(word_embeddings)
- restore_model = encoder.build_graph_from_config(model_config,
- checkpoint_path)
- sess = tf.Session(graph=g)
- restore_model(sess)
- self.encoders.append(encoder)
- self.sessions.append(sess)
- def encode(self,
- data,
- use_norm=True,
- verbose=False,
- batch_size=128,
- use_eos=False):
- """Encodes a sequence of sentences as skip-thought vectors.
- Args:
- data: A list of input strings.
- use_norm: If True, normalize output skip-thought vectors to unit L2 norm.
- verbose: Whether to log every batch.
- batch_size: Batch size for the RNN encoders.
- use_eos: If True, append the end-of-sentence word to each input sentence.
- Returns:
- thought_vectors: A list of numpy arrays corresponding to 'data'.
- Raises:
- ValueError: If called before calling load_encoder.
- """
- if not self.encoders:
- raise ValueError(
- "Must call load_model at least once before calling encode.")
- encoded = []
- for encoder, sess in zip(self.encoders, self.sessions):
- encoded.append(
- np.array(
- encoder.encode(
- sess,
- data,
- use_norm=use_norm,
- verbose=verbose,
- batch_size=batch_size,
- use_eos=use_eos)))
- return np.concatenate(encoded, axis=1)
- def close(self):
- """Closes the active TensorFlow Sessions."""
- for sess in self.sessions:
- sess.close()
|