This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu dc97aa0ffb Upgrade to TF 1.0 8 rokov pred
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 rokov pred
autoencoder dec7c89f5b Variational Autoencoder generate() function fixed (z fed in rather than z_mean) 9 rokov pred
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 rokov pred
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 rokov pred
domain_adaptation dc97aa0ffb Upgrade to TF 1.0 8 rokov pred
im2txt 3607bf489a Fix Links in Readme.md 9 rokov pred
inception 78153f1f74 Additional fixes to get download_and_preprocess_flowers working 8 rokov pred
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 rokov pred
lm_1b fdc4ce37a4 Fix README 9 rokov pred
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 rokov pred
neural_gpu ee017e0dbf Fix two typos 9 rokov pred
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 rokov pred
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 rokov pred
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 9 rokov pred
resnet 92d751b4a9 correct tf.summary.scalar illegal name `learning rate` 9 rokov pred
skip_thoughts 8af6f0e283 Update the encoding instructions 9 rokov pred
slim b45378391e =Other tensorflow_models changes. 8 rokov pred
street 40a5739ae2 Remove <center> tags, which are breaking images in README.md files 9 rokov pred
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 rokov pred
syntaxnet 6cdcd45a93 Update README.md 8 rokov pred
textsum 3bbc5d2f38 Make the README for textsum a little clearer 8 rokov pred
transformer ceed1a31db old argument targets->labels of tf.nn.softmax_cross_entropy_with_logits for tf 1.0 9 rokov pred
tutorials 29881fb483 Improved the spacing on the comment 8 rokov pred
video_prediction 211ee00a3b Convert tf.GraphKeys.VARIABLES -> tf.GraphKeys.GLOBAL_VARIABLES 9 rokov pred
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 rokov pred
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 rokov pred
AUTHORS 41c52d60fe Spatial Transformer model 10 rokov pred
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 rokov pred
LICENSE 7c41e653dc Update LICENSE 10 rokov pred
README.md ca87cc9dd9 Maintain alphabetization and styling 8 rokov pred
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 rokov pred

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Currently, the models are compatible with TensorFlow 1.0 or later. If you are running TensorFlow 0.12 or earlier, please upgrade your installation.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • domain_adaptation: domain separation networks.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • skip_thoughts: recurrent neural network sentence-to-vector encoder.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.