Autoencoder.py 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. import tensorflow as tf
  2. class Autoencoder(object):
  3. def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
  4. self.n_input = n_input
  5. self.n_hidden = n_hidden
  6. self.transfer = transfer_function
  7. network_weights = self._initialize_weights()
  8. self.weights = network_weights
  9. # model
  10. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  11. self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
  12. self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
  13. # cost
  14. self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
  15. self.optimizer = optimizer.minimize(self.cost)
  16. init = tf.global_variables_initializer()
  17. self.sess = tf.Session()
  18. self.sess.run(init)
  19. def _initialize_weights(self):
  20. all_weights = dict()
  21. all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
  22. initializer=tf.contrib.layers.xavier_initializer())
  23. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  24. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  25. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  26. return all_weights
  27. def partial_fit(self, X):
  28. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  29. return cost
  30. def calc_total_cost(self, X):
  31. return self.sess.run(self.cost, feed_dict = {self.x: X})
  32. def transform(self, X):
  33. return self.sess.run(self.hidden, feed_dict={self.x: X})
  34. def generate(self, hidden = None):
  35. if hidden is None:
  36. hidden = self.sess.run(tf.random_normal([1, self.n_hidden]))
  37. return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})
  38. def reconstruct(self, X):
  39. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  40. def getWeights(self):
  41. return self.sess.run(self.weights['w1'])
  42. def getBiases(self):
  43. return self.sess.run(self.weights['b1'])