VariationalAutoencoder.py 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import tensorflow as tf
  2. class VariationalAutoencoder(object):
  3. def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()):
  4. self.n_input = n_input
  5. self.n_hidden = n_hidden
  6. network_weights = self._initialize_weights()
  7. self.weights = network_weights
  8. # model
  9. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  10. self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
  11. self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])
  12. # sample from gaussian distribution
  13. eps = tf.random_normal(tf.stack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32)
  14. self.z = tf.add(self.z_mean, tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
  15. self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])
  16. # cost
  17. reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
  18. latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
  19. - tf.square(self.z_mean)
  20. - tf.exp(self.z_log_sigma_sq), 1)
  21. self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
  22. self.optimizer = optimizer.minimize(self.cost)
  23. init = tf.global_variables_initializer()
  24. self.sess = tf.Session()
  25. self.sess.run(init)
  26. def _initialize_weights(self):
  27. all_weights = dict()
  28. all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden],
  29. initializer=tf.contrib.layers.xavier_initializer())
  30. all_weights['log_sigma_w1'] = tf.get_variable("log_sigma_w1", shape=[self.n_input, self.n_hidden],
  31. initializer=tf.contrib.layers.xavier_initializer())
  32. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  33. all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  34. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  35. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  36. return all_weights
  37. def partial_fit(self, X):
  38. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  39. return cost
  40. def calc_total_cost(self, X):
  41. return self.sess.run(self.cost, feed_dict = {self.x: X})
  42. def transform(self, X):
  43. return self.sess.run(self.z_mean, feed_dict={self.x: X})
  44. def generate(self, hidden = None):
  45. if hidden is None:
  46. hidden = self.sess.run(tf.random_normal([1, self.n_hidden]))
  47. return self.sess.run(self.reconstruction, feed_dict={self.z: hidden})
  48. def reconstruct(self, X):
  49. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  50. def getWeights(self):
  51. return self.sess.run(self.weights['w1'])
  52. def getBiases(self):
  53. return self.sess.run(self.weights['b1'])