| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Train the model."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from im2txt import configuration
- from im2txt import show_and_tell_model
- FLAGS = tf.app.flags.FLAGS
- tf.flags.DEFINE_string("input_file_pattern", "",
- "File pattern of sharded TFRecord input files.")
- tf.flags.DEFINE_string("inception_checkpoint_file", "",
- "Path to a pretrained inception_v3 model.")
- tf.flags.DEFINE_string("train_dir", "",
- "Directory for saving and loading model checkpoints.")
- tf.flags.DEFINE_boolean("train_inception", False,
- "Whether to train inception submodel variables.")
- tf.flags.DEFINE_integer("number_of_steps", 1000000, "Number of training steps.")
- tf.flags.DEFINE_integer("log_every_n_steps", 1,
- "Frequency at which loss and global step are logged.")
- tf.logging.set_verbosity(tf.logging.INFO)
- def main(unused_argv):
- assert FLAGS.input_file_pattern, "--input_file_pattern is required"
- assert FLAGS.train_dir, "--train_dir is required"
- model_config = configuration.ModelConfig()
- model_config.input_file_pattern = FLAGS.input_file_pattern
- model_config.inception_checkpoint_file = FLAGS.inception_checkpoint_file
- training_config = configuration.TrainingConfig()
- # Create training directory.
- train_dir = FLAGS.train_dir
- if not tf.gfile.IsDirectory(train_dir):
- tf.logging.info("Creating training directory: %s", train_dir)
- tf.gfile.MakeDirs(train_dir)
- # Build the TensorFlow graph.
- g = tf.Graph()
- with g.as_default():
- # Build the model.
- model = show_and_tell_model.ShowAndTellModel(
- model_config, mode="train", train_inception=FLAGS.train_inception)
- model.build()
- # Set up the learning rate.
- learning_rate_decay_fn = None
- if FLAGS.train_inception:
- learning_rate = tf.constant(training_config.train_inception_learning_rate)
- else:
- learning_rate = tf.constant(training_config.initial_learning_rate)
- if training_config.learning_rate_decay_factor > 0:
- num_batches_per_epoch = (training_config.num_examples_per_epoch /
- model_config.batch_size)
- decay_steps = int(num_batches_per_epoch *
- training_config.num_epochs_per_decay)
- def _learning_rate_decay_fn(learning_rate, global_step):
- return tf.train.exponential_decay(
- learning_rate,
- global_step,
- decay_steps=decay_steps,
- decay_rate=training_config.learning_rate_decay_factor,
- staircase=True)
- learning_rate_decay_fn = _learning_rate_decay_fn
- # Set up the training ops.
- train_op = tf.contrib.layers.optimize_loss(
- loss=model.total_loss,
- global_step=model.global_step,
- learning_rate=learning_rate,
- optimizer=training_config.optimizer,
- clip_gradients=training_config.clip_gradients,
- learning_rate_decay_fn=learning_rate_decay_fn)
- # Run training.
- tf.contrib.slim.learning.train(
- train_op,
- train_dir,
- log_every_n_steps=FLAGS.log_every_n_steps,
- graph=g,
- global_step=model.global_step,
- number_of_steps=FLAGS.number_of_steps,
- init_fn=model.init_fn,
- saver=model.saver)
- if __name__ == "__main__":
- tf.app.run()
|