This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu f6e23e5618 Revert "add 'reuse' parameter to RNNCells to make code compatible with tensorflow master code" пре 9 година
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) пре 9 година
autoencoder aef35824f4 Removed external dependencies from autoencoder models пре 9 година
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script пре 9 година
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master пре 9 година
im2txt 3607bf489a Fix Links in Readme.md пре 9 година
inception 08bf19d263 Formatting/style fixes пре 9 година
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes пре 9 година
lm_1b fdc4ce37a4 Fix README пре 9 година
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master пре 9 година
neural_gpu ee017e0dbf Fix two typos пре 9 година
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master пре 9 година
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script пре 9 година
real_nvp 5c53534305 Manually fixed many occurrences of tf.split пре 9 година
resnet 92d751b4a9 correct tf.summary.scalar illegal name `learning rate` пре 9 година
skip_thoughts 8af6f0e283 Update the encoding instructions пре 9 година
slim 1e01a47493 Rename slim_walkthough.ipynb to slim_walkthrough.ipynb пре 9 година
street b41ff7f1bf Remove name arguments from tf.summary.scalar пре 9 година
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes пре 9 година
syntaxnet 0de0e850e9 Make table valid markdown пре 9 година
textsum 73ae53ac28 Replace old tf.nn modules with 1.0-compatible versions пре 9 година
transformer ceed1a31db old argument targets->labels of tf.nn.softmax_cross_entropy_with_logits for tf 1.0 пре 9 година
tutorials f6e23e5618 Revert "add 'reuse' parameter to RNNCells to make code compatible with tensorflow master code" пре 9 година
video_prediction 211ee00a3b Convert tf.GraphKeys.VARIABLES -> tf.GraphKeys.GLOBAL_VARIABLES пре 9 година
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) пре 9 година
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) пре 9 година
AUTHORS 41c52d60fe Spatial Transformer model пре 10 година
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines пре 10 година
LICENSE 7c41e653dc Update LICENSE пре 10 година
README.md 68609ca78a TF implementation of Skip Thoughts. пре 9 година
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. пре 9 година

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • skip_thoughts: recurrent neural network sentence-to-vector encoder.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.