This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu f7fd001239 Merge pull request #1068 from Aniruddha-Tapas/Update-README-for-added-models преди 8 години
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) преди 9 години
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
differential_privacy 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
im2txt 00ffa603f2 Manually fixed many occurrences of tf.concat преди 8 години
inception c2fe833c56 Add a notice to the README in models/inception преди 8 години
learning_to_remember_rare_events 6a9c0da962 add learning to remember rare events преди 8 години
lm_1b fdc4ce37a4 Fix README преди 9 години
namignizer 74ae822126 Remove leading space from namignizer code преди 8 години
neural_gpu 5c53534305 Manually fixed many occurrences of tf.split преди 8 години
neural_programmer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
real_nvp 5c53534305 Manually fixed many occurrences of tf.split преди 8 години
resnet 64254ad355 Modify the README to reflect changes преди 8 години
slim 546fd48ecb Additional upgrades to 1.0 and code fixes преди 8 години
street b41ff7f1bf Remove name arguments from tf.summary.scalar преди 8 години
swivel 00ffa603f2 Manually fixed many occurrences of tf.concat преди 8 години
syntaxnet 00ffa603f2 Manually fixed many occurrences of tf.concat преди 8 години
textsum 546fd48ecb Additional upgrades to 1.0 and code fixes преди 8 години
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
tutorials 0b2c5ba296 Merge pull request #1112 from zym1010/issue1083 преди 8 години
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 8 години
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) преди 9 години
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) преди 9 години
AUTHORS 41c52d60fe Spatial Transformer model преди 9 години
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines преди 9 години
LICENSE 7c41e653dc Update LICENSE преди 9 години
README.md 727418e4ae One more tiny change преди 8 години
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. преди 9 години

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.