This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.
|
|
%!s(int64=9) %!d(string=hai) anos | |
|---|---|---|
| .github | %!s(int64=9) %!d(string=hai) anos | |
| autoencoder | %!s(int64=9) %!d(string=hai) anos | |
| compression | %!s(int64=9) %!d(string=hai) anos | |
| differential_privacy | %!s(int64=9) %!d(string=hai) anos | |
| im2txt | %!s(int64=9) %!d(string=hai) anos | |
| inception | %!s(int64=9) %!d(string=hai) anos | |
| lm_1b | %!s(int64=9) %!d(string=hai) anos | |
| namignizer | %!s(int64=9) %!d(string=hai) anos | |
| neural_gpu | %!s(int64=9) %!d(string=hai) anos | |
| resnet | %!s(int64=9) %!d(string=hai) anos | |
| slim | %!s(int64=9) %!d(string=hai) anos | |
| street | %!s(int64=9) %!d(string=hai) anos | |
| swivel | %!s(int64=9) %!d(string=hai) anos | |
| syntaxnet | %!s(int64=9) %!d(string=hai) anos | |
| textsum | %!s(int64=9) %!d(string=hai) anos | |
| transformer | %!s(int64=9) %!d(string=hai) anos | |
| video_prediction | %!s(int64=9) %!d(string=hai) anos | |
| .gitignore | %!s(int64=9) %!d(string=hai) anos | |
| .gitmodules | %!s(int64=9) %!d(string=hai) anos | |
| AUTHORS | %!s(int64=9) %!d(string=hai) anos | |
| CONTRIBUTING.md | %!s(int64=9) %!d(string=hai) anos | |
| LICENSE | %!s(int64=9) %!d(string=hai) anos | |
| README.md | %!s(int64=9) %!d(string=hai) anos | |
| WORKSPACE | %!s(int64=9) %!d(string=hai) anos | |
| data_utils.py | %!s(int64=9) %!d(string=hai) anos | |
| model.py | %!s(int64=9) %!d(string=hai) anos | |
| neural_programmer.py | %!s(int64=9) %!d(string=hai) anos | |
| nn_utils.py | %!s(int64=9) %!d(string=hai) anos | |
| parameters.py | %!s(int64=9) %!d(string=hai) anos | |
| wiki_data.py | %!s(int64=9) %!d(string=hai) anos |
This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.
To propose a model for inclusion please submit a pull request.
Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge
Download the data from http://www-nlp.stanford.edu/software/sempre/wikitable/ Change the data_dir FLAG to the location of the data
Training: python neural_programmer.py
The models are written to FLAGS.output_dir
Testing: python neural_programmer.py --evaluator_job=True
The models are loaded from FLAGS.output_dir. The evaluation is done on development data.
Maintained by Arvind Neelakantan (arvind2505)