data_utils.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245
  1. """Convolutional Gated Recurrent Networks for Algorithm Learning."""
  2. import math
  3. import random
  4. import sys
  5. import time
  6. import google3
  7. import numpy as np
  8. import tensorflow as tf
  9. from google3.third_party.tensorflow.python.platform import gfile
  10. FLAGS = tf.app.flags.FLAGS
  11. bins = [8, 16, 32, 64, 128]
  12. all_tasks = ["sort", "id", "rev", "incr", "left", "right", "left-shift", "add",
  13. "right-shift", "bmul", "dup", "badd", "qadd"]
  14. forward_max = 128
  15. log_filename = ""
  16. def pad(l):
  17. for b in bins:
  18. if b >= l: return b
  19. return forward_max
  20. train_set = {}
  21. test_set = {}
  22. for some_task in all_tasks:
  23. train_set[some_task] = []
  24. test_set[some_task] = []
  25. for all_max_len in xrange(10000):
  26. train_set[some_task].append([])
  27. test_set[some_task].append([])
  28. def add(n1, n2, base=10):
  29. """Add two numbers represented as lower-endian digit lists."""
  30. k = max(len(n1), len(n2)) + 1
  31. d1 = n1 + [0 for _ in xrange(k - len(n1))]
  32. d2 = n2 + [0 for _ in xrange(k - len(n2))]
  33. res = []
  34. carry = 0
  35. for i in xrange(k):
  36. if d1[i] + d2[i] + carry < base:
  37. res.append(d1[i] + d2[i] + carry)
  38. carry = 0
  39. else:
  40. res.append(d1[i] + d2[i] + carry - base)
  41. carry = 1
  42. while res and res[-1] == 0:
  43. res = res[:-1]
  44. if res: return res
  45. return [0]
  46. def init_data(task, length, nbr_cases, nclass):
  47. """Data initialization."""
  48. def rand_pair(l, task):
  49. """Random data pair for a task. Total length should be <= l."""
  50. k = (l-1)/2
  51. base = 10
  52. if task[0] == "b": base = 2
  53. if task[0] == "q": base = 4
  54. d1 = [np.random.randint(base) for _ in xrange(k)]
  55. d2 = [np.random.randint(base) for _ in xrange(k)]
  56. if task in ["add", "badd", "qadd"]:
  57. res = add(d1, d2, base)
  58. elif task in ["bmul"]:
  59. d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
  60. d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
  61. res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
  62. else:
  63. sys.exit()
  64. sep = [12]
  65. if task in ["add", "badd", "qadd"]: sep = [11]
  66. inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
  67. return inp, [r + 1 for r in res]
  68. def rand_dup_pair(l):
  69. """Random data pair for duplication task. Total length should be <= l."""
  70. k = l/2
  71. x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
  72. inp = x + [0 for _ in xrange(l - k)]
  73. res = x + x + [0 for _ in xrange(l - 2*k)]
  74. return inp, res
  75. def spec(inp):
  76. """Return the target given the input for some tasks."""
  77. if task == "sort":
  78. return sorted(inp)
  79. elif task == "id":
  80. return inp
  81. elif task == "rev":
  82. return [i for i in reversed(inp)]
  83. elif task == "incr":
  84. carry = 1
  85. res = []
  86. for i in xrange(len(inp)):
  87. if inp[i] + carry < nclass:
  88. res.append(inp[i] + carry)
  89. carry = 0
  90. else:
  91. res.append(1)
  92. carry = 1
  93. return res
  94. elif task == "left":
  95. return [inp[0]]
  96. elif task == "right":
  97. return [inp[-1]]
  98. elif task == "left-shift":
  99. return [inp[l-1] for l in xrange(len(inp))]
  100. elif task == "right-shift":
  101. return [inp[l+1] for l in xrange(len(inp))]
  102. else:
  103. print_out("Unknown spec for task " + str(task))
  104. sys.exit()
  105. l = length
  106. cur_time = time.time()
  107. total_time = 0.0
  108. for case in xrange(nbr_cases):
  109. total_time += time.time() - cur_time
  110. cur_time = time.time()
  111. if l > 10000 and case % 100 == 1:
  112. print_out(" avg gen time %.4f s" % (total_time / float(case)))
  113. if task in ["add", "badd", "qadd", "bmul"]:
  114. i, t = rand_pair(l, task)
  115. train_set[task][len(i)].append([i, t])
  116. i, t = rand_pair(l, task)
  117. test_set[task][len(i)].append([i, t])
  118. elif task == "dup":
  119. i, t = rand_dup_pair(l)
  120. train_set[task][len(i)].append([i, t])
  121. i, t = rand_dup_pair(l)
  122. test_set[task][len(i)].append([i, t])
  123. else:
  124. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  125. target = spec(inp)
  126. train_set[task][l].append([inp, target])
  127. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  128. target = spec(inp)
  129. test_set[task][l].append([inp, target])
  130. def get_batch(max_length, batch_size, do_train, task, offset=None, preset=None):
  131. """Get a batch of data, training or testing."""
  132. inputs = []
  133. targets = []
  134. length = max_length
  135. if preset is None:
  136. cur_set = test_set[task]
  137. if do_train: cur_set = train_set[task]
  138. while not cur_set[length]:
  139. length -= 1
  140. pad_length = pad(length)
  141. for b in xrange(batch_size):
  142. if preset is None:
  143. elem = random.choice(cur_set[length])
  144. if offset is not None and offset + b < len(cur_set[length]):
  145. elem = cur_set[length][offset + b]
  146. else:
  147. elem = preset
  148. inp, target = elem[0], elem[1]
  149. assert len(inp) == length
  150. inputs.append(inp + [0 for l in xrange(pad_length - len(inp))])
  151. targets.append(target + [0 for l in xrange(pad_length - len(target))])
  152. res_input = []
  153. res_target = []
  154. for l in xrange(pad_length):
  155. new_input = np.array([inputs[b][l] for b in xrange(batch_size)],
  156. dtype=np.int32)
  157. new_target = np.array([targets[b][l] for b in xrange(batch_size)],
  158. dtype=np.int32)
  159. res_input.append(new_input)
  160. res_target.append(new_target)
  161. return res_input, res_target
  162. def print_out(s, newline=True):
  163. """Print a message out and log it to file."""
  164. if log_filename:
  165. try:
  166. with gfile.GFile(log_filename, mode="a") as f:
  167. f.write(s + ("\n" if newline else ""))
  168. # pylint: disable=bare-except
  169. except:
  170. sys.stdout.write("Error appending to %s\n" % log_filename)
  171. sys.stdout.write(s + ("\n" if newline else ""))
  172. sys.stdout.flush()
  173. def decode(output):
  174. return [np.argmax(o, axis=1) for o in output]
  175. def accuracy(inpt, output, target, batch_size, nprint):
  176. """Calculate output accuracy given target."""
  177. assert nprint < batch_size + 1
  178. def task_print(inp, output, target):
  179. stop_bound = 0
  180. print_len = 0
  181. while print_len < len(target) and target[print_len] > stop_bound:
  182. print_len += 1
  183. print_out(" i: " + " ".join([str(i - 1) for i in inp if i > 0]))
  184. print_out(" o: " +
  185. " ".join([str(output[l] - 1) for l in xrange(print_len)]))
  186. print_out(" t: " +
  187. " ".join([str(target[l] - 1) for l in xrange(print_len)]))
  188. decoded_target = target
  189. decoded_output = decode(output)
  190. total = 0
  191. errors = 0
  192. seq = [0 for b in xrange(batch_size)]
  193. for l in xrange(len(decoded_output)):
  194. for b in xrange(batch_size):
  195. if decoded_target[l][b] > 0:
  196. total += 1
  197. if decoded_output[l][b] != decoded_target[l][b]:
  198. seq[b] = 1
  199. errors += 1
  200. e = 0 # Previous error index
  201. for _ in xrange(min(nprint, sum(seq))):
  202. while seq[e] == 0:
  203. e += 1
  204. task_print([inpt[l][e] for l in xrange(len(inpt))],
  205. [decoded_output[l][e] for l in xrange(len(decoded_target))],
  206. [decoded_target[l][e] for l in xrange(len(decoded_target))])
  207. e += 1
  208. for b in xrange(nprint - errors):
  209. task_print([inpt[l][b] for l in xrange(len(inpt))],
  210. [decoded_output[l][b] for l in xrange(len(decoded_target))],
  211. [decoded_target[l][b] for l in xrange(len(decoded_target))])
  212. return errors, total, sum(seq)
  213. def safe_exp(x):
  214. perp = 10000
  215. if x < 100: perp = math.exp(x)
  216. if perp > 10000: return 10000
  217. return perp