123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- #!/usr/bin/python
- #
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- r"""Neural Network Image Compression Encoder.
- Compresses an image to a binarized numpy array. The image must be padded to a
- multiple of 32 pixels in height and width.
- Example usage:
- python encoder.py --input_image=/your/image/here.png \
- --output_codes=output_codes.pkl --iteration=15 --model=residual_gru.pb
- """
- import io
- import os
- import numpy as np
- import tensorflow as tf
- tf.flags.DEFINE_string('input_image', None, 'Location of input image. We rely '
- 'on tf.image to decode the image, so only PNG and JPEG '
- 'formats are currently supported.')
- tf.flags.DEFINE_integer('iteration', 15, 'Quality level for encoding image. '
- 'Must be between 0 and 15 inclusive.')
- tf.flags.DEFINE_string('output_codes', None, 'File to save output encoding.')
- tf.flags.DEFINE_string('model', None, 'Location of compression model.')
- FLAGS = tf.flags.FLAGS
- def get_output_tensor_names():
- name_list = ['GruBinarizer/SignBinarizer/Sign:0']
- for i in range(1, 16):
- name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i))
- return name_list
- def main(_):
- if (FLAGS.input_image is None or FLAGS.output_codes is None or
- FLAGS.model is None):
- print('\nUsage: python encoder.py --input_image=/your/image/here.png '
- '--output_codes=output_codes.pkl --iteration=15 '
- '--model=residual_gru.pb\n\n')
- return
- if FLAGS.iteration < 0 or FLAGS.iteration > 15:
- print('\n--iteration must be between 0 and 15 inclusive.\n')
- return
- with tf.gfile.FastGFile(FLAGS.input_image) as input_image:
- input_image_str = input_image.read()
- with tf.Graph().as_default() as graph:
- # Load the inference model for encoding.
- with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(model_file.read())
- _ = tf.import_graph_def(graph_def, name='')
- input_tensor = graph.get_tensor_by_name('Placeholder:0')
- outputs = [graph.get_tensor_by_name(name) for name in
- get_output_tensor_names()]
- input_image = tf.placeholder(tf.string)
- _, ext = os.path.splitext(FLAGS.input_image)
- if ext == '.png':
- decoded_image = tf.image.decode_png(input_image, channels=3)
- elif ext == '.jpeg' or ext == '.jpg':
- decoded_image = tf.image.decode_jpeg(input_image, channels=3)
- else:
- assert False, 'Unsupported file format {}'.format(ext)
- decoded_image = tf.expand_dims(decoded_image, 0)
- with tf.Session(graph=graph) as sess:
- img_array = sess.run(decoded_image, feed_dict={input_image:
- input_image_str})
- results = sess.run(outputs, feed_dict={input_tensor: img_array})
- results = results[0:FLAGS.iteration + 1]
- int_codes = np.asarray([x.astype(np.int8) for x in results])
- # Convert int codes to binary.
- int_codes = (int_codes + 1)//2
- export = np.packbits(int_codes.reshape(-1))
- output = io.BytesIO()
- np.savez_compressed(output, shape=int_codes.shape, codes=export)
- with tf.gfile.FastGFile(FLAGS.output_codes, 'w') as code_file:
- code_file.write(output.getvalue())
- if __name__ == '__main__':
- tf.app.run()
|