1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Provides data for the MNIST-M dataset.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import tensorflow as tf
- from slim.datasets import dataset_utils
- slim = tf.contrib.slim
- _FILE_PATTERN = 'mnist_m_%s.tfrecord'
- _SPLITS_TO_SIZES = {'train': 58001, 'valid': 1000, 'test': 9001}
- _NUM_CLASSES = 10
- _ITEMS_TO_DESCRIPTIONS = {
- 'image': 'A [32 x 32 x 1] RGB image.',
- 'label': 'A single integer between 0 and 9',
- }
- def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
- """Gets a dataset tuple with instructions for reading MNIST.
- Args:
- split_name: A train/test split name.
- dataset_dir: The base directory of the dataset sources.
- Returns:
- A `Dataset` namedtuple.
- Raises:
- ValueError: if `split_name` is not a valid train/test split.
- """
- if split_name not in _SPLITS_TO_SIZES:
- raise ValueError('split name %s was not recognized.' % split_name)
- if not file_pattern:
- file_pattern = _FILE_PATTERN
- file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
- # Allowing None in the signature so that dataset_factory can use the default.
- if reader is None:
- reader = tf.TFRecordReader
- keys_to_features = {
- 'image/encoded':
- tf.FixedLenFeature((), tf.string, default_value=''),
- 'image/format':
- tf.FixedLenFeature((), tf.string, default_value='png'),
- 'image/class/label':
- tf.FixedLenFeature(
- [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
- }
- items_to_handlers = {
- 'image': slim.tfexample_decoder.Image(shape=[32, 32, 3], channels=3),
- 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[]),
- }
- decoder = slim.tfexample_decoder.TFExampleDecoder(
- keys_to_features, items_to_handlers)
- labels_to_names = None
- if dataset_utils.has_labels(dataset_dir):
- labels_to_names = dataset_utils.read_label_file(dataset_dir)
- return slim.dataset.Dataset(
- data_sources=file_pattern,
- reader=reader,
- decoder=decoder,
- num_samples=_SPLITS_TO_SIZES[split_name],
- num_classes=_NUM_CLASSES,
- items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
- labels_to_names=labels_to_names)
|