Neal Wu 68e47ad3c4 Further fixes for the domain_adaptation README 8 gadi atpakaļ
..
datasets 94b559a839 Domain Separation Networks changes. 8 gadi atpakaļ
domain_separation f03fa19d1f Remove commented-out deps. 8 gadi atpakaļ
README.md 68e47ad3c4 Further fixes for the domain_adaptation README 8 gadi atpakaļ
WORKSPACE 89c7c98711 DSN infrastructure staging 8 gadi atpakaļ
__init__.py 89c7c98711 DSN infrastructure staging 8 gadi atpakaļ

README.md

Domain Separation Networks

Introduction

This code is the code used for the "Domain Separation Networks" paper by Bousmalis K., Trigeorgis G., et al. which was presented at NIPS 2016. The paper can be found here: https://arxiv.org/abs/1608.06019.

Contact

This code was open-sourced by Konstantinos Bousmalis (konstantinos@google.com).

Installation

You will need to have the following installed on your machine before trying out the DSN code.

Important Note

Although we are making the code available, you are only able to use the MNIST provider for now. We will soon provide a script to download and convert MNIST-M as well. Check back here in a few weeks or wait for a relevant announcement from @bousmalis.

Running the code for adapting MNIST to MNIST-M

In order to run the MNIST to MNIST-M experiments with DANNs and/or DANNs with domain separation (DSNs) you will need to set the directory you used to download MNIST and MNIST-M:

$ export DSN_DATA_DIR=/your/dir

Then you need to build the binaries with Bazel:

$ bazel build -c opt domain_adaptation/domain_separation/...

Add models and models/slim to your $PYTHONPATH:

$ export PYTHONPATH=$PYTHONPATH:$PWD:$PWD/slim

You can then train with the following command:

$ ./bazel-bin/domain_adaptation/domain_separation/dsn_train  \
      --similarity_loss=dann_loss  \
      --basic_tower=dann_mnist  \
      --source_dataset=mnist  \
      --target_dataset=mnist_m  \
      --learning_rate=0.0117249  \
      --gamma_weight=0.251175  \
      --weight_decay=1e-6  \
      --layers_to_regularize=fc3  \
      --nouse_separation  \
      --master=""  \
      --dataset_dir=${DSN_DATA_DIR}  \
      -v --use_logging

Evaluation can be invoked with the following command:

$ ./bazel-bin/domain_adaptation/domain_separation/dsn_eval  \
    -v --dataset mnist_m --split test --num_examples=9001  \
    --dataset_dir=${DSN_DATA_DIR}