123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- # Copyright 2017 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # ==============================================================================
- """Memory module for storing "nearest neighbors".
- Implements a key-value memory for generalized one-shot learning
- as described in the paper
- "Learning to Remember Rare Events"
- by Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio,
- published as a conference paper at ICLR 2017.
- """
- import numpy as np
- import tensorflow as tf
- class Memory(object):
- """Memory module."""
- def __init__(self, key_dim, memory_size, vocab_size,
- choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
- var_cache_device='', nn_device=''):
- self.key_dim = key_dim
- self.memory_size = memory_size
- self.vocab_size = vocab_size
- self.choose_k = min(choose_k, memory_size)
- self.alpha = alpha
- self.correct_in_top = correct_in_top
- self.age_noise = age_noise
- self.var_cache_device = var_cache_device # Variables are cached here.
- self.nn_device = nn_device # Device to perform nearest neighbour matmul.
- caching_device = var_cache_device if var_cache_device else None
- self.update_memory = tf.constant(True) # Can be fed "false" if needed.
- self.mem_keys = tf.get_variable(
- 'memkeys', [self.memory_size, self.key_dim], trainable=False,
- initializer=tf.random_uniform_initializer(-0.0, 0.0),
- caching_device=caching_device)
- self.mem_vals = tf.get_variable(
- 'memvals', [self.memory_size], dtype=tf.int32, trainable=False,
- initializer=tf.constant_initializer(0, tf.int32),
- caching_device=caching_device)
- self.mem_age = tf.get_variable(
- 'memage', [self.memory_size], dtype=tf.float32, trainable=False,
- initializer=tf.constant_initializer(0.0), caching_device=caching_device)
- self.recent_idx = tf.get_variable(
- 'recent_idx', [self.vocab_size], dtype=tf.int32, trainable=False,
- initializer=tf.constant_initializer(0, tf.int32))
- # variable for projecting query vector into memory key
- self.query_proj = tf.get_variable(
- 'memory_query_proj', [self.key_dim, self.key_dim], dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(0, 0.01),
- caching_device=caching_device)
- def get(self):
- return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
- def set(self, k, v, a, r=None):
- return tf.group(
- self.mem_keys.assign(k),
- self.mem_vals.assign(v),
- self.mem_age.assign(a),
- (self.recent_idx.assign(r) if r is not None else tf.group()))
- def clear(self):
- return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
- self.recent_idx])
- def get_hint_pool_idxs(self, normalized_query):
- """Get small set of idxs to compute nearest neighbor queries on.
- This is an expensive look-up on the whole memory that is used to
- avoid more expensive operations later on.
- Args:
- normalized_query: A Tensor of shape [None, key_dim].
- Returns:
- A Tensor of shape [None, choose_k] of indices in memory
- that are closest to the queries.
- """
- # look up in large memory, no gradients
- with tf.device(self.nn_device):
- similarities = tf.matmul(tf.stop_gradient(normalized_query),
- self.mem_keys, transpose_b=True, name='nn_mmul')
- _, hint_pool_idxs = tf.nn.top_k(
- tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
- return hint_pool_idxs
- def make_update_op(self, upd_idxs, upd_keys, upd_vals,
- batch_size, use_recent_idx, intended_output):
- """Function that creates all the update ops."""
- mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
- dtype=tf.float32))
- with tf.control_dependencies([mem_age_incr]):
- mem_age_upd = tf.scatter_update(
- self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))
- mem_key_upd = tf.scatter_update(
- self.mem_keys, upd_idxs, upd_keys)
- mem_val_upd = tf.scatter_update(
- self.mem_vals, upd_idxs, upd_vals)
- if use_recent_idx:
- recent_idx_upd = tf.scatter_update(
- self.recent_idx, intended_output, upd_idxs)
- else:
- recent_idx_upd = tf.group()
- return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd)
- def query(self, query_vec, intended_output, use_recent_idx=True):
- """Queries memory for nearest neighbor.
- Args:
- query_vec: A batch of vectors to query (embedding of input to model).
- intended_output: The values that would be the correct output of the
- memory.
- use_recent_idx: Whether to always insert at least one instance of a
- correct memory fetch.
- Returns:
- A tuple (result, mask, teacher_loss).
- result: The result of the memory look up.
- mask: The affinity of the query to the result.
- teacher_loss: The loss for training the memory module.
- """
- batch_size = tf.shape(query_vec)[0]
- output_given = intended_output is not None
- # prepare query for memory lookup
- query_vec = tf.matmul(query_vec, self.query_proj)
- normalized_query = tf.nn.l2_normalize(query_vec, dim=1)
- hint_pool_idxs = self.get_hint_pool_idxs(normalized_query)
- if output_given and use_recent_idx: # add at least one correct memory
- most_recent_hint_idx = tf.gather(self.recent_idx, intended_output)
- hint_pool_idxs = tf.concat(
- axis=1,
- values=[hint_pool_idxs, tf.expand_dims(most_recent_hint_idx, 1)])
- choose_k = tf.shape(hint_pool_idxs)[1]
- with tf.device(self.var_cache_device):
- # create small memory and look up with gradients
- my_mem_keys = tf.stop_gradient(tf.gather(self.mem_keys, hint_pool_idxs,
- name='my_mem_keys_gather'))
- similarities = tf.matmul(tf.expand_dims(normalized_query, 1),
- my_mem_keys, adjoint_b=True, name='batch_mmul')
- hint_pool_sims = tf.squeeze(similarities, [1], name='hint_pool_sims')
- hint_pool_mem_vals = tf.gather(self.mem_vals, hint_pool_idxs,
- name='hint_pool_mem_vals')
- # Calculate softmax mask on the top-k if requested.
- # Softmax temperature. Say we have K elements at dist x and one at (x+a).
- # Softmax of the last is e^tm(x+a)/Ke^tm*x + e^tm(x+a) = e^tm*a/K+e^tm*a.
- # To make that 20% we'd need to have e^tm*a ~= 0.2K, so tm = log(0.2K)/a.
- softmax_temp = max(1.0, np.log(0.2 * self.choose_k) / self.alpha)
- mask = tf.nn.softmax(hint_pool_sims[:, :choose_k - 1] * softmax_temp)
- # prepare hints from the teacher on hint pool
- teacher_hints = tf.to_float(
- tf.abs(tf.expand_dims(intended_output, 1) - hint_pool_mem_vals))
- teacher_hints = 1.0 - tf.minimum(1.0, teacher_hints)
- teacher_vals, teacher_hint_idxs = tf.nn.top_k(
- hint_pool_sims * teacher_hints, k=1)
- neg_teacher_vals, _ = tf.nn.top_k(
- hint_pool_sims * (1 - teacher_hints), k=1)
- # bring back idxs to full memory
- teacher_idxs = tf.gather(
- tf.reshape(hint_pool_idxs, [-1]),
- teacher_hint_idxs[:, 0] + choose_k * tf.range(batch_size))
- # zero-out teacher_vals if there are no hints
- teacher_vals *= (
- 1 - tf.to_float(tf.equal(0.0, tf.reduce_sum(teacher_hints, 1))))
- # prepare returned values
- nearest_neighbor = tf.to_int32(
- tf.argmax(hint_pool_sims[:, :choose_k - 1], 1))
- no_teacher_idxs = tf.gather(
- tf.reshape(hint_pool_idxs, [-1]),
- nearest_neighbor + choose_k * tf.range(batch_size))
- # we'll determine whether to do an update to memory based on whether
- # memory was queried correctly
- sliced_hints = tf.slice(teacher_hints, [0, 0], [-1, self.correct_in_top])
- incorrect_memory_lookup = tf.equal(0.0, tf.reduce_sum(sliced_hints, 1))
- # loss based on triplet loss
- teacher_loss = (tf.nn.relu(neg_teacher_vals - teacher_vals + self.alpha)
- - self.alpha)
- with tf.device(self.var_cache_device):
- result = tf.gather(self.mem_vals, tf.reshape(no_teacher_idxs, [-1]))
- # prepare memory updates
- update_keys = normalized_query
- update_vals = intended_output
- fetched_idxs = teacher_idxs # correctly fetched from memory
- with tf.device(self.var_cache_device):
- fetched_keys = tf.gather(self.mem_keys, fetched_idxs, name='fetched_keys')
- fetched_vals = tf.gather(self.mem_vals, fetched_idxs, name='fetched_vals')
- # do memory updates here
- fetched_keys_upd = update_keys + fetched_keys # Momentum-like update
- fetched_keys_upd = tf.nn.l2_normalize(fetched_keys_upd, dim=1)
- # Randomize age a bit, e.g., to select different ones in parallel workers.
- mem_age_with_noise = self.mem_age + tf.random_uniform(
- [self.memory_size], - self.age_noise, self.age_noise)
- _, oldest_idxs = tf.nn.top_k(mem_age_with_noise, k=batch_size, sorted=False)
- with tf.control_dependencies([result]):
- upd_idxs = tf.where(incorrect_memory_lookup,
- oldest_idxs,
- fetched_idxs)
- # upd_idxs = tf.Print(upd_idxs, [upd_idxs], "UPD IDX", summarize=8)
- upd_keys = tf.where(incorrect_memory_lookup,
- update_keys,
- fetched_keys_upd)
- upd_vals = tf.where(incorrect_memory_lookup,
- update_vals,
- fetched_vals)
- def make_update_op():
- return self.make_update_op(upd_idxs, upd_keys, upd_vals,
- batch_size, use_recent_idx, intended_output)
- update_op = tf.cond(self.update_memory, make_update_op, tf.no_op)
- with tf.control_dependencies([update_op]):
- result = tf.identity(result)
- mask = tf.identity(mask)
- teacher_loss = tf.identity(teacher_loss)
- return result, mask, tf.reduce_mean(teacher_loss)
- class LSHMemory(Memory):
- """Memory employing locality sensitive hashing.
- Note: Not fully tested.
- """
- def __init__(self, key_dim, memory_size, vocab_size,
- choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
- var_cache_device='', nn_device='',
- num_hashes=None, num_libraries=None):
- super(LSHMemory, self).__init__(
- key_dim, memory_size, vocab_size,
- choose_k=choose_k, alpha=alpha, correct_in_top=1, age_noise=age_noise,
- var_cache_device=var_cache_device, nn_device=nn_device)
- self.num_libraries = num_libraries or int(self.choose_k ** 0.5)
- self.num_per_hash_slot = max(1, self.choose_k // self.num_libraries)
- self.num_hashes = (num_hashes or
- int(np.log2(self.memory_size / self.num_per_hash_slot)))
- self.num_hashes = min(max(self.num_hashes, 1), 20)
- self.num_hash_slots = 2 ** self.num_hashes
- # hashing vectors
- self.hash_vecs = [
- tf.get_variable(
- 'hash_vecs%d' % i, [self.num_hashes, self.key_dim],
- dtype=tf.float32, trainable=False,
- initializer=tf.truncated_normal_initializer(0, 1))
- for i in xrange(self.num_libraries)]
- # map representing which hash slots map to which mem keys
- self.hash_slots = [
- tf.get_variable(
- 'hash_slots%d' % i, [self.num_hash_slots, self.num_per_hash_slot],
- dtype=tf.int32, trainable=False,
- initializer=tf.random_uniform_initializer(maxval=self.memory_size,
- dtype=tf.int32))
- for i in xrange(self.num_libraries)]
- def get(self): # not implemented
- return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
- def set(self, k, v, a, r=None): # not implemented
- return tf.group(
- self.mem_keys.assign(k),
- self.mem_vals.assign(v),
- self.mem_age.assign(a),
- (self.recent_idx.assign(r) if r is not None else tf.group()))
- def clear(self):
- return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
- self.recent_idx] + self.hash_slots)
- def get_hash_slots(self, query):
- """Gets hashed-to buckets for batch of queries.
- Args:
- query: 2-d Tensor of query vectors.
- Returns:
- A list of hashed-to buckets for each hash function.
- """
- binary_hash = [
- tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
- for i in xrange(self.num_libraries)]
- hash_slot_idxs = [
- tf.reduce_sum(
- tf.to_int32(binary_hash[i]) *
- tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
- dtype=tf.int32), 1)
- for i in xrange(self.num_libraries)]
- return hash_slot_idxs
- def get_hint_pool_idxs(self, normalized_query):
- """Get small set of idxs to compute nearest neighbor queries on.
- This is an expensive look-up on the whole memory that is used to
- avoid more expensive operations later on.
- Args:
- normalized_query: A Tensor of shape [None, key_dim].
- Returns:
- A Tensor of shape [None, choose_k] of indices in memory
- that are closest to the queries.
- """
- # get hash of query vecs
- hash_slot_idxs = self.get_hash_slots(normalized_query)
- # grab mem idxs in the hash slots
- hint_pool_idxs = [
- tf.maximum(tf.minimum(
- tf.gather(self.hash_slots[i], idxs),
- self.memory_size - 1), 0)
- for i, idxs in enumerate(hash_slot_idxs)]
- return tf.concat(axis=1, values=hint_pool_idxs)
- def make_update_op(self, upd_idxs, upd_keys, upd_vals,
- batch_size, use_recent_idx, intended_output):
- """Function that creates all the update ops."""
- base_update_op = super(LSHMemory, self).make_update_op(
- upd_idxs, upd_keys, upd_vals,
- batch_size, use_recent_idx, intended_output)
- # compute hash slots to be updated
- hash_slot_idxs = self.get_hash_slots(upd_keys)
- # make updates
- update_ops = []
- with tf.control_dependencies([base_update_op]):
- for i, slot_idxs in enumerate(hash_slot_idxs):
- # for each slot, choose which entry to replace
- entry_idx = tf.random_uniform([batch_size],
- maxval=self.num_per_hash_slot,
- dtype=tf.int32)
- entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot,
- dtype=tf.int32)
- entry_add = (tf.expand_dims(upd_idxs, 1) *
- tf.one_hot(entry_idx, self.num_per_hash_slot,
- dtype=tf.int32))
- mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul)
- with tf.control_dependencies([mul_op]):
- add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add)
- update_ops.append(add_op)
- return tf.group(*update_ops)
|