123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Eval pre-trained 1 billion word language model.
- """
- import os
- import sys
- import numpy as np
- import tensorflow as tf
- from google.protobuf import text_format
- import data_utils
- FLAGS = tf.flags.FLAGS
- # General flags.
- tf.flags.DEFINE_string('mode', 'eval',
- 'One of [sample, eval, dump_emb, dump_lstm_emb]. '
- '"sample" mode samples future word predictions, using '
- 'FLAGS.prefix as prefix (prefix could be left empty). '
- '"eval" mode calculates perplexity of the '
- 'FLAGS.input_data. '
- '"dump_emb" mode dumps word and softmax embeddings to '
- 'FLAGS.save_dir. embeddings are dumped in the same '
- 'order as words in vocabulary. All words in vocabulary '
- 'are dumped.'
- 'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence '
- 'to FLAGS.save_dir.')
- tf.flags.DEFINE_string('pbtxt', '',
- 'GraphDef proto text file used to construct model '
- 'structure.')
- tf.flags.DEFINE_string('ckpt', '',
- 'Checkpoint directory used to fill model values.')
- tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.')
- tf.flags.DEFINE_string('save_dir', '',
- 'Used for "dump_emb" mode to save word embeddings.')
- # sample mode flags.
- tf.flags.DEFINE_string('prefix', '',
- 'Used for "sample" mode to predict next words.')
- tf.flags.DEFINE_integer('max_sample_words', 100,
- 'Sampling stops either when </S> is met or this number '
- 'of steps has passed.')
- tf.flags.DEFINE_integer('num_samples', 3,
- 'Number of samples to generate for the prefix.')
- # dump_lstm_emb mode flags.
- tf.flags.DEFINE_string('sentence', '',
- 'Used as input for "dump_lstm_emb" mode.')
- # eval mode flags.
- tf.flags.DEFINE_string('input_data', '',
- 'Input data files for eval model.')
- tf.flags.DEFINE_integer('max_eval_steps', 1000000,
- 'Maximum mumber of steps to run "eval" mode.')
- # For saving demo resources, use batch size 1 and step 1.
- BATCH_SIZE = 1
- NUM_TIMESTEPS = 1
- MAX_WORD_LEN = 50
- def _LoadModel(gd_file, ckpt_file):
- """Load the model from GraphDef and Checkpoint.
- Args:
- gd_file: GraphDef proto text file.
- ckpt_file: TensorFlow Checkpoint file.
- Returns:
- TensorFlow session and tensors dict.
- """
- with tf.Graph().as_default():
- sys.stderr.write('Recovering graph.\n')
- with tf.gfile.FastGFile(gd_file, 'r') as f:
- s = f.read()
- gd = tf.GraphDef()
- text_format.Merge(s, gd)
- tf.logging.info('Recovering Graph %s', gd_file)
- t = {}
- [t['states_init'], t['lstm/lstm_0/control_dependency'],
- t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'],
- t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'],
- t['targets_in'], t['target_weights_in'], t['char_inputs_in'],
- t['all_embs'], t['softmax_weights'], t['global_step']
- ] = tf.import_graph_def(gd, {}, ['states_init',
- 'lstm/lstm_0/control_dependency:0',
- 'lstm/lstm_1/control_dependency:0',
- 'softmax_out:0',
- 'class_ids_out:0',
- 'class_weights_out:0',
- 'log_perplexity_out:0',
- 'inputs_in:0',
- 'targets_in:0',
- 'target_weights_in:0',
- 'char_inputs_in:0',
- 'all_embs_out:0',
- 'Reshape_3:0',
- 'global_step:0'], name='')
- sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file)
- sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
- sess.run('save/restore_all', {'save/Const:0': ckpt_file})
- sess.run(t['states_init'])
- return sess, t
- def _EvalModel(dataset):
- """Evaluate model perplexity using provided dataset.
- Args:
- dataset: LM1BDataset object.
- """
- sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
- current_step = t['global_step'].eval(session=sess)
- sys.stderr.write('Loaded step %d.\n' % current_step)
- data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False)
- sum_num = 0.0
- sum_den = 0.0
- perplexity = 0.0
- for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen):
- input_dict = {t['inputs_in']: inputs,
- t['targets_in']: targets,
- t['target_weights_in']: weights}
- if 'char_inputs_in' in t:
- input_dict[t['char_inputs_in']] = char_inputs
- log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict)
- if np.isnan(log_perp):
- sys.stderr.error('log_perplexity is Nan.\n')
- else:
- sum_num += log_perp * weights.mean()
- sum_den += weights.mean()
- if sum_den > 0:
- perplexity = np.exp(sum_num / sum_den)
- sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' %
- (i, perplexity))
- if i > FLAGS.max_eval_steps:
- break
- def _SampleSoftmax(softmax):
- return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1)
- def _SampleModel(prefix_words, vocab):
- """Predict next words using the given prefix words.
- Args:
- prefix_words: Prefix words.
- vocab: Vocabulary. Contains max word chard id length and converts between
- words and ids.
- """
- targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
- sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
- if prefix_words.find('<S>') != 0:
- prefix_words = '<S> ' + prefix_words
- prefix = [vocab.word_to_id(w) for w in prefix_words.split()]
- prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()]
- for _ in xrange(FLAGS.num_samples):
- inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- char_ids_inputs = np.zeros(
- [BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
- samples = prefix[:]
- char_ids_samples = prefix_char_ids[:]
- sent = ''
- while True:
- inputs[0, 0] = samples[0]
- char_ids_inputs[0, 0, :] = char_ids_samples[0]
- samples = samples[1:]
- char_ids_samples = char_ids_samples[1:]
- softmax = sess.run(t['softmax_out'],
- feed_dict={t['char_inputs_in']: char_ids_inputs,
- t['inputs_in']: inputs,
- t['targets_in']: targets,
- t['target_weights_in']: weights})
- sample = _SampleSoftmax(softmax[0])
- sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample))
- if not samples:
- samples = [sample]
- char_ids_samples = [sample_char_ids]
- sent += vocab.id_to_word(samples[0]) + ' '
- sys.stderr.write('%s\n' % sent)
- if (vocab.id_to_word(samples[0]) == '</S>' or
- len(sent) > FLAGS.max_sample_words):
- break
- def _DumpEmb(vocab):
- """Dump the softmax weights and word embeddings to files.
- Args:
- vocab: Vocabulary. Contains vocabulary size and converts word to ids.
- """
- assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.'
- inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
- sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
- softmax_weights = sess.run(t['softmax_weights'])
- fname = FLAGS.save_dir + '/embeddings_softmax.npy'
- with tf.gfile.Open(fname, mode='w') as f:
- np.save(f, softmax_weights)
- sys.stderr.write('Finished softmax weights\n')
- all_embs = np.zeros([vocab.size, 1024])
- for i in range(vocab.size):
- input_dict = {t['inputs_in']: inputs,
- t['targets_in']: targets,
- t['target_weights_in']: weights}
- if 'char_inputs_in' in t:
- input_dict[t['char_inputs_in']] = (
- vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN]))
- embs = sess.run(t['all_embs'], input_dict)
- all_embs[i, :] = embs
- sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size))
- fname = FLAGS.save_dir + '/embeddings_char_cnn.npy'
- with tf.gfile.Open(fname, mode='w') as f:
- np.save(f, all_embs)
- sys.stderr.write('Embedding file saved\n')
- def _DumpSentenceEmbedding(sentence, vocab):
- """Predict next words using the given prefix words.
- Args:
- sentence: Sentence words.
- vocab: Vocabulary. Contains max word chard id length and converts between
- words and ids.
- """
- targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
- sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
- if sentence.find('<S>') != 0:
- sentence = '<S> ' + sentence
- word_ids = [vocab.word_to_id(w) for w in sentence.split()]
- char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()]
- inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
- char_ids_inputs = np.zeros(
- [BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
- for i in xrange(len(word_ids)):
- inputs[0, 0] = word_ids[i]
- char_ids_inputs[0, 0, :] = char_ids[i]
- # Add 'lstm/lstm_0/control_dependency' if you want to dump previous layer
- # LSTM.
- lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'],
- feed_dict={t['char_inputs_in']: char_ids_inputs,
- t['inputs_in']: inputs,
- t['targets_in']: targets,
- t['target_weights_in']: weights})
- fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i)
- with tf.gfile.Open(fname, mode='w') as f:
- np.save(f, lstm_emb)
- sys.stderr.write('LSTM embedding step %d file saved\n' % i)
- def main(unused_argv):
- vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN)
- if FLAGS.mode == 'eval':
- dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab)
- _EvalModel(dataset)
- elif FLAGS.mode == 'sample':
- _SampleModel(FLAGS.prefix, vocab)
- elif FLAGS.mode == 'dump_emb':
- _DumpEmb(vocab)
- elif FLAGS.mode == 'dump_lstm_emb':
- _DumpSentenceEmbedding(FLAGS.sentence, vocab)
- else:
- raise Exception('Mode not supported.')
- if __name__ == '__main__':
- tf.app.run()
|