data_utils.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. # Copyright 2015 Google Inc. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """Neural GPU -- data generation and batching utilities."""
  16. import math
  17. import os
  18. import random
  19. import sys
  20. import time
  21. import numpy as np
  22. import tensorflow as tf
  23. import program_utils
  24. FLAGS = tf.app.flags.FLAGS
  25. bins = [2 + bin_idx_i for bin_idx_i in xrange(256)]
  26. all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left",
  27. "right", "left-shift", "right-shift", "bmul", "mul", "dup",
  28. "badd", "qadd", "search", "progeval", "progsynth"]
  29. log_filename = ""
  30. vocab, rev_vocab = None, None
  31. def pad(l):
  32. for b in bins:
  33. if b >= l: return b
  34. return bins[-1]
  35. def bin_for(l):
  36. for i, b in enumerate(bins):
  37. if b >= l: return i
  38. return len(bins) - 1
  39. train_set = {}
  40. test_set = {}
  41. for some_task in all_tasks:
  42. train_set[some_task] = []
  43. test_set[some_task] = []
  44. for all_max_len in xrange(10000):
  45. train_set[some_task].append([])
  46. test_set[some_task].append([])
  47. def read_tmp_file(name):
  48. """Read from a file with the given name in our log directory or above."""
  49. dirname = os.path.dirname(log_filename)
  50. fname = os.path.join(dirname, name + ".txt")
  51. if not tf.gfile.Exists(fname):
  52. print_out("== not found file: " + fname)
  53. fname = os.path.join(dirname, "../" + name + ".txt")
  54. if not tf.gfile.Exists(fname):
  55. print_out("== not found file: " + fname)
  56. fname = os.path.join(dirname, "../../" + name + ".txt")
  57. if not tf.gfile.Exists(fname):
  58. print_out("== not found file: " + fname)
  59. return None
  60. print_out("== found file: " + fname)
  61. res = []
  62. with tf.gfile.GFile(fname, mode="r") as f:
  63. for line in f:
  64. res.append(line.strip())
  65. return res
  66. def write_tmp_file(name, lines):
  67. dirname = os.path.dirname(log_filename)
  68. fname = os.path.join(dirname, name + ".txt")
  69. with tf.gfile.GFile(fname, mode="w") as f:
  70. for line in lines:
  71. f.write(line + "\n")
  72. def add(n1, n2, base=10):
  73. """Add two numbers represented as lower-endian digit lists."""
  74. k = max(len(n1), len(n2)) + 1
  75. d1 = n1 + [0 for _ in xrange(k - len(n1))]
  76. d2 = n2 + [0 for _ in xrange(k - len(n2))]
  77. res = []
  78. carry = 0
  79. for i in xrange(k):
  80. if d1[i] + d2[i] + carry < base:
  81. res.append(d1[i] + d2[i] + carry)
  82. carry = 0
  83. else:
  84. res.append(d1[i] + d2[i] + carry - base)
  85. carry = 1
  86. while res and res[-1] == 0:
  87. res = res[:-1]
  88. if res: return res
  89. return [0]
  90. def init_data(task, length, nbr_cases, nclass):
  91. """Data initialization."""
  92. def rand_pair(l, task):
  93. """Random data pair for a task. Total length should be <= l."""
  94. k = (l-1)/2
  95. base = 10
  96. if task[0] == "b": base = 2
  97. if task[0] == "q": base = 4
  98. d1 = [np.random.randint(base) for _ in xrange(k)]
  99. d2 = [np.random.randint(base) for _ in xrange(k)]
  100. if task in ["add", "badd", "qadd"]:
  101. res = add(d1, d2, base)
  102. elif task in ["mul", "bmul"]:
  103. d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
  104. d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
  105. if task == "bmul":
  106. res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
  107. else:
  108. res = [int(x) for x in list(reversed(str(d1n * d2n)))]
  109. else:
  110. sys.exit()
  111. sep = [12]
  112. if task in ["add", "badd", "qadd"]: sep = [11]
  113. inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
  114. return inp, [r + 1 for r in res]
  115. def rand_dup_pair(l):
  116. """Random data pair for duplication task. Total length should be <= l."""
  117. k = l/2
  118. x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
  119. inp = x + [0 for _ in xrange(l - k)]
  120. res = x + x + [0 for _ in xrange(l - 2*k)]
  121. return inp, res
  122. def rand_rev2_pair(l):
  123. """Random data pair for reverse2 task. Total length should be <= l."""
  124. inp = [(np.random.randint(nclass - 1) + 1,
  125. np.random.randint(nclass - 1) + 1) for _ in xrange(l/2)]
  126. res = [i for i in reversed(inp)]
  127. return [x for p in inp for x in p], [x for p in res for x in p]
  128. def rand_search_pair(l):
  129. """Random data pair for search task. Total length should be <= l."""
  130. inp = [(np.random.randint(nclass - 1) + 1,
  131. np.random.randint(nclass - 1) + 1) for _ in xrange(l-1/2)]
  132. q = np.random.randint(nclass - 1) + 1
  133. res = 0
  134. for (k, v) in reversed(inp):
  135. if k == q:
  136. res = v
  137. return [x for p in inp for x in p] + [q], [res]
  138. def rand_kvsort_pair(l):
  139. """Random data pair for key-value sort. Total length should be <= l."""
  140. keys = [(np.random.randint(nclass - 1) + 1, i) for i in xrange(l/2)]
  141. vals = [np.random.randint(nclass - 1) + 1 for _ in xrange(l/2)]
  142. kv = [(k, vals[i]) for (k, i) in keys]
  143. sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)]
  144. return [x for p in kv for x in p], [x for p in sorted_kv for x in p]
  145. def prog_io_pair(prog, max_len, counter=0):
  146. try:
  147. ilen = np.random.randint(max_len - 3) + 1
  148. bound = max(15 - (counter / 20), 1)
  149. inp = [random.choice(range(-bound, bound)) for _ in range(ilen)]
  150. inp_toks = [program_utils.prog_rev_vocab[t]
  151. for t in program_utils.tokenize(str(inp)) if t != ","]
  152. out = program_utils.evaluate(prog, {"a": inp})
  153. out_toks = [program_utils.prog_rev_vocab[t]
  154. for t in program_utils.tokenize(str(out)) if t != ","]
  155. if counter > 400:
  156. out_toks = []
  157. if (out_toks and out_toks[0] == program_utils.prog_rev_vocab["["] and
  158. len(out_toks) != len([o for o in out if o == ","]) + 3):
  159. raise ValueError("generated list with too long ints")
  160. if (out_toks and out_toks[0] != program_utils.prog_rev_vocab["["] and
  161. len(out_toks) > 1):
  162. raise ValueError("generated one int but tokenized it to many")
  163. if len(out_toks) > max_len:
  164. raise ValueError("output too long")
  165. return (inp_toks, out_toks)
  166. except ValueError:
  167. return prog_io_pair(prog, max_len, counter+1)
  168. def spec(inp):
  169. """Return the target given the input for some tasks."""
  170. if task == "sort":
  171. return sorted(inp)
  172. elif task == "id":
  173. return inp
  174. elif task == "rev":
  175. return [i for i in reversed(inp)]
  176. elif task == "incr":
  177. carry = 1
  178. res = []
  179. for i in xrange(len(inp)):
  180. if inp[i] + carry < nclass:
  181. res.append(inp[i] + carry)
  182. carry = 0
  183. else:
  184. res.append(1)
  185. carry = 1
  186. return res
  187. elif task == "left":
  188. return [inp[0]]
  189. elif task == "right":
  190. return [inp[-1]]
  191. elif task == "left-shift":
  192. return [inp[l-1] for l in xrange(len(inp))]
  193. elif task == "right-shift":
  194. return [inp[l+1] for l in xrange(len(inp))]
  195. else:
  196. print_out("Unknown spec for task " + str(task))
  197. sys.exit()
  198. l = length
  199. cur_time = time.time()
  200. total_time = 0.0
  201. is_prog = task in ["progeval", "progsynth"]
  202. if is_prog:
  203. inputs_per_prog = 5
  204. program_utils.make_vocab()
  205. progs = read_tmp_file("programs_len%d" % (l / 10))
  206. if not progs:
  207. progs = program_utils.gen(l / 10, 1.2 * nbr_cases / inputs_per_prog)
  208. write_tmp_file("programs_len%d" % (l / 10), progs)
  209. prog_ios = read_tmp_file("programs_len%d_io" % (l / 10))
  210. nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
  211. if not prog_ios:
  212. # Generate program io data.
  213. prog_ios = []
  214. for pidx, prog in enumerate(progs):
  215. if pidx % 500 == 0:
  216. print_out("== generating io pairs for program %d" % pidx)
  217. if pidx * inputs_per_prog > nbr_cases * 1.2:
  218. break
  219. ptoks = [program_utils.prog_rev_vocab[t]
  220. for t in program_utils.tokenize(prog)]
  221. ptoks.append(program_utils.prog_rev_vocab["_EOS"])
  222. plen = len(ptoks)
  223. for _ in xrange(inputs_per_prog):
  224. if task == "progeval":
  225. inp, out = prog_io_pair(prog, plen)
  226. prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
  227. elif task == "progsynth":
  228. plen = max(len(ptoks), 8)
  229. for _ in xrange(3):
  230. inp, out = prog_io_pair(prog, plen / 2)
  231. prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
  232. write_tmp_file("programs_len%d_io" % (l / 10), prog_ios)
  233. prog_ios_dict = {}
  234. for s in prog_ios:
  235. i, o, p = s.split("\t")
  236. i_clean = "".join([c for c in i if c.isdigit() or c == " "])
  237. o_clean = "".join([c for c in o if c.isdigit() or c == " "])
  238. inp = [int(x) for x in i_clean.split()]
  239. out = [int(x) for x in o_clean.split()]
  240. if inp and out:
  241. if p in prog_ios_dict:
  242. prog_ios_dict[p].append([inp, out])
  243. else:
  244. prog_ios_dict[p] = [[inp, out]]
  245. # Use prog_ios_dict to create data.
  246. progs = []
  247. for prog in prog_ios_dict:
  248. if len([c for c in prog if c == ";"]) <= (l / 10):
  249. progs.append(prog)
  250. nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
  251. print_out("== %d training cases on %d progs" % (nbr_cases, len(progs)))
  252. for pidx, prog in enumerate(progs):
  253. if pidx * inputs_per_prog > nbr_cases * 1.2:
  254. break
  255. ptoks = [program_utils.prog_rev_vocab[t]
  256. for t in program_utils.tokenize(prog)]
  257. ptoks.append(program_utils.prog_rev_vocab["_EOS"])
  258. plen = len(ptoks)
  259. dset = train_set if pidx < nbr_cases / inputs_per_prog else test_set
  260. for _ in xrange(inputs_per_prog):
  261. if task == "progeval":
  262. inp, out = prog_ios_dict[prog].pop()
  263. dset[task][bin_for(plen)].append([[ptoks, inp, [], []], [out]])
  264. elif task == "progsynth":
  265. plen, ilist = max(len(ptoks), 8), [[]]
  266. for _ in xrange(3):
  267. inp, out = prog_ios_dict[prog].pop()
  268. ilist.append(inp + out)
  269. dset[task][bin_for(plen)].append([ilist, [ptoks]])
  270. for case in xrange(0 if is_prog else nbr_cases):
  271. total_time += time.time() - cur_time
  272. cur_time = time.time()
  273. if l > 10000 and case % 100 == 1:
  274. print_out(" avg gen time %.4f s" % (total_time / float(case)))
  275. if task in ["add", "badd", "qadd", "bmul", "mul"]:
  276. i, t = rand_pair(l, task)
  277. train_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
  278. i, t = rand_pair(l, task)
  279. test_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
  280. elif task == "dup":
  281. i, t = rand_dup_pair(l)
  282. train_set[task][bin_for(len(i))].append([[i], [t]])
  283. i, t = rand_dup_pair(l)
  284. test_set[task][bin_for(len(i))].append([[i], [t]])
  285. elif task == "rev2":
  286. i, t = rand_rev2_pair(l)
  287. train_set[task][bin_for(len(i))].append([[i], [t]])
  288. i, t = rand_rev2_pair(l)
  289. test_set[task][bin_for(len(i))].append([[i], [t]])
  290. elif task == "search":
  291. i, t = rand_search_pair(l)
  292. train_set[task][bin_for(len(i))].append([[i], [t]])
  293. i, t = rand_search_pair(l)
  294. test_set[task][bin_for(len(i))].append([[i], [t]])
  295. elif task == "kvsort":
  296. i, t = rand_kvsort_pair(l)
  297. train_set[task][bin_for(len(i))].append([[i], [t]])
  298. i, t = rand_kvsort_pair(l)
  299. test_set[task][bin_for(len(i))].append([[i], [t]])
  300. elif task not in ["progeval", "progsynth"]:
  301. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  302. target = spec(inp)
  303. train_set[task][bin_for(l)].append([[inp], [target]])
  304. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  305. target = spec(inp)
  306. test_set[task][bin_for(l)].append([[inp], [target]])
  307. def to_symbol(i):
  308. """Covert ids to text."""
  309. if i == 0: return ""
  310. if i == 11: return "+"
  311. if i == 12: return "*"
  312. return str(i-1)
  313. def to_id(s):
  314. """Covert text to ids."""
  315. if s == "+": return 11
  316. if s == "*": return 12
  317. return int(s) + 1
  318. def get_batch(bin_id, batch_size, data_set, height, offset=None, preset=None):
  319. """Get a batch of data, training or testing."""
  320. inputs, targets = [], []
  321. pad_length = bins[bin_id]
  322. for b in xrange(batch_size):
  323. if preset is None:
  324. elem = random.choice(data_set[bin_id])
  325. if offset is not None and offset + b < len(data_set[bin_id]):
  326. elem = data_set[bin_id][offset + b]
  327. else:
  328. elem = preset
  329. inpt, targett, inpl, targetl = elem[0], elem[1], [], []
  330. for inp in inpt:
  331. inpl.append(inp + [0 for _ in xrange(pad_length - len(inp))])
  332. if len(inpl) == 1:
  333. for _ in xrange(height - 1):
  334. inpl.append([0 for _ in xrange(pad_length)])
  335. for target in targett:
  336. targetl.append(target + [0 for _ in xrange(pad_length - len(target))])
  337. inputs.append(inpl)
  338. targets.append(targetl)
  339. res_input = np.array(inputs, dtype=np.int32)
  340. res_target = np.array(targets, dtype=np.int32)
  341. assert list(res_input.shape) == [batch_size, height, pad_length]
  342. assert list(res_target.shape) == [batch_size, 1, pad_length]
  343. return res_input, res_target
  344. def print_out(s, newline=True):
  345. """Print a message out and log it to file."""
  346. if log_filename:
  347. try:
  348. with tf.gfile.GFile(log_filename, mode="a") as f:
  349. f.write(s + ("\n" if newline else ""))
  350. # pylint: disable=bare-except
  351. except:
  352. sys.stderr.write("Error appending to %s\n" % log_filename)
  353. sys.stdout.write(s + ("\n" if newline else ""))
  354. sys.stdout.flush()
  355. def decode(output):
  356. return [np.argmax(o, axis=1) for o in output]
  357. def accuracy(inpt_t, output, target_t, batch_size, nprint,
  358. beam_out=None, beam_scores=None):
  359. """Calculate output accuracy given target."""
  360. assert nprint < batch_size + 1
  361. inpt = []
  362. for h in xrange(inpt_t.shape[1]):
  363. inpt.extend([inpt_t[:, h, l] for l in xrange(inpt_t.shape[2])])
  364. target = [target_t[:, 0, l] for l in xrange(target_t.shape[2])]
  365. def tok(i):
  366. if rev_vocab and i < len(rev_vocab):
  367. return rev_vocab[i]
  368. return str(i - 1)
  369. def task_print(inp, output, target):
  370. stop_bound = 0
  371. print_len = 0
  372. while print_len < len(target) and target[print_len] > stop_bound:
  373. print_len += 1
  374. print_out(" i: " + " ".join([tok(i) for i in inp if i > 0]))
  375. print_out(" o: " +
  376. " ".join([tok(output[l]) for l in xrange(print_len)]))
  377. print_out(" t: " +
  378. " ".join([tok(target[l]) for l in xrange(print_len)]))
  379. decoded_target = target
  380. decoded_output = decode(output)
  381. # Use beam output if given and score is high enough.
  382. if beam_out is not None:
  383. for b in xrange(batch_size):
  384. if beam_scores[b] >= 10.0:
  385. for l in xrange(min(len(decoded_output), beam_out.shape[2])):
  386. decoded_output[l][b] = int(beam_out[b, 0, l])
  387. total = 0
  388. errors = 0
  389. seq = [0 for b in xrange(batch_size)]
  390. for l in xrange(len(decoded_output)):
  391. for b in xrange(batch_size):
  392. if decoded_target[l][b] > 0:
  393. total += 1
  394. if decoded_output[l][b] != decoded_target[l][b]:
  395. seq[b] = 1
  396. errors += 1
  397. e = 0 # Previous error index
  398. for _ in xrange(min(nprint, sum(seq))):
  399. while seq[e] == 0:
  400. e += 1
  401. task_print([inpt[l][e] for l in xrange(len(inpt))],
  402. [decoded_output[l][e] for l in xrange(len(decoded_target))],
  403. [decoded_target[l][e] for l in xrange(len(decoded_target))])
  404. e += 1
  405. for b in xrange(nprint - errors):
  406. task_print([inpt[l][b] for l in xrange(len(inpt))],
  407. [decoded_output[l][b] for l in xrange(len(decoded_target))],
  408. [decoded_target[l][b] for l in xrange(len(decoded_target))])
  409. return errors, total, sum(seq)
  410. def safe_exp(x):
  411. perp = 10000
  412. x = float(x)
  413. if x < 100: perp = math.exp(x)
  414. if perp > 10000: return 10000
  415. return perp