123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Author: aneelakantan (Arvind Neelakantan)
- """
- import numpy as np
- import tensorflow as tf
- import nn_utils
- class Graph():
- def __init__(self, utility, batch_size, max_passes, mode="train"):
- self.utility = utility
- self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type]
- self.max_elements = self.utility.FLAGS.max_elements
- max_elements = self.utility.FLAGS.max_elements
- self.num_cols = self.utility.FLAGS.max_number_cols
- self.num_word_cols = self.utility.FLAGS.max_word_cols
- self.question_length = self.utility.FLAGS.question_length
- self.batch_size = batch_size
- self.max_passes = max_passes
- self.mode = mode
- self.embedding_dims = self.utility.FLAGS.embedding_dims
- #input question and a mask
- self.batch_question = tf.placeholder(tf.int32,
- [batch_size, self.question_length])
- self.batch_question_attention_mask = tf.placeholder(
- self.data_type, [batch_size, self.question_length])
- #ground truth scalar answer and lookup answer
- self.batch_answer = tf.placeholder(self.data_type, [batch_size])
- self.batch_print_answer = tf.placeholder(
- self.data_type,
- [batch_size, self.num_cols + self.num_word_cols, max_elements])
- #number columns and its processed version
- self.batch_number_column = tf.placeholder(
- self.data_type, [batch_size, self.num_cols, max_elements
- ]) #columns with numeric entries
- self.batch_processed_number_column = tf.placeholder(
- self.data_type, [batch_size, self.num_cols, max_elements])
- self.batch_processed_sorted_index_number_column = tf.placeholder(
- tf.int32, [batch_size, self.num_cols, max_elements])
- #word columns and its processed version
- self.batch_processed_word_column = tf.placeholder(
- self.data_type, [batch_size, self.num_word_cols, max_elements])
- self.batch_processed_sorted_index_word_column = tf.placeholder(
- tf.int32, [batch_size, self.num_word_cols, max_elements])
- self.batch_word_column_entry_mask = tf.placeholder(
- tf.int32, [batch_size, self.num_word_cols, max_elements])
- #names of word and number columns along with their mask
- self.batch_word_column_names = tf.placeholder(
- tf.int32,
- [batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length])
- self.batch_word_column_mask = tf.placeholder(
- self.data_type, [batch_size, self.num_word_cols])
- self.batch_number_column_names = tf.placeholder(
- tf.int32,
- [batch_size, self.num_cols, self.utility.FLAGS.max_entry_length])
- self.batch_number_column_mask = tf.placeholder(self.data_type,
- [batch_size, self.num_cols])
- #exact match and group by max operation
- self.batch_exact_match = tf.placeholder(
- self.data_type,
- [batch_size, self.num_cols + self.num_word_cols, max_elements])
- self.batch_column_exact_match = tf.placeholder(
- self.data_type, [batch_size, self.num_cols + self.num_word_cols])
- self.batch_group_by_max = tf.placeholder(
- self.data_type,
- [batch_size, self.num_cols + self.num_word_cols, max_elements])
- #numbers in the question along with their position. This is used to compute arguments to the comparison operations
- self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1])
- self.batch_question_number_one = tf.placeholder(self.data_type,
- [batch_size, 1])
- self.batch_question_number_mask = tf.placeholder(
- self.data_type, [batch_size, max_elements])
- self.batch_question_number_one_mask = tf.placeholder(self.data_type,
- [batch_size, 1])
- self.batch_ordinal_question = tf.placeholder(
- self.data_type, [batch_size, self.question_length])
- self.batch_ordinal_question_one = tf.placeholder(
- self.data_type, [batch_size, self.question_length])
- def LSTM_question_embedding(self, sentence, sentence_length):
- #LSTM processes the input question
- lstm_params = "question_lstm"
- hidden_vectors = []
- sentence = self.batch_question
- question_hidden = tf.zeros(
- [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
- question_c_hidden = tf.zeros(
- [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
- if (self.utility.FLAGS.rnn_dropout > 0.0):
- if (self.mode == "train"):
- rnn_dropout_mask = tf.cast(
- tf.random_uniform(
- tf.shape(question_hidden), minval=0.0, maxval=1.0) <
- self.utility.FLAGS.rnn_dropout,
- self.data_type) / self.utility.FLAGS.rnn_dropout
- else:
- rnn_dropout_mask = tf.ones_like(question_hidden)
- for question_iterator in range(self.question_length):
- curr_word = sentence[:, question_iterator]
- question_vector = nn_utils.apply_dropout(
- nn_utils.get_embedding(curr_word, self.utility, self.params),
- self.utility.FLAGS.dropout, self.mode)
- question_hidden, question_c_hidden = nn_utils.LSTMCell(
- question_vector, question_hidden, question_c_hidden, lstm_params,
- self.params)
- if (self.utility.FLAGS.rnn_dropout > 0.0):
- question_hidden = question_hidden * rnn_dropout_mask
- hidden_vectors.append(tf.expand_dims(question_hidden, 0))
- hidden_vectors = tf.concat(axis=0, values=hidden_vectors)
- return question_hidden, hidden_vectors
- def history_recurrent_step(self, curr_hprev, hprev):
- #A single RNN step for controller or history RNN
- return tf.tanh(
- tf.matmul(
- tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[
- "history_recurrent"])) + self.params["history_recurrent_bias"]
- def question_number_softmax(self, hidden_vectors):
- #Attention on quetsion to decide the question number to passed to comparison ops
- def compute_ans(op_embedding, comparison):
- op_embedding = tf.expand_dims(op_embedding, 0)
- #dot product of operation embedding with hidden state to the left of the number occurrence
- first = tf.transpose(
- tf.matmul(op_embedding,
- tf.transpose(
- tf.reduce_sum(hidden_vectors * tf.tile(
- tf.expand_dims(
- tf.transpose(self.batch_ordinal_question), 2),
- [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
- second = self.batch_question_number_one_mask + tf.transpose(
- tf.matmul(op_embedding,
- tf.transpose(
- tf.reduce_sum(hidden_vectors * tf.tile(
- tf.expand_dims(
- tf.transpose(self.batch_ordinal_question_one), 2
- ), [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
- question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second]))
- if (self.mode == "test"):
- cond = tf.equal(question_number_softmax,
- tf.reshape(
- tf.reduce_max(question_number_softmax, 1),
- [self.batch_size, 1]))
- question_number_softmax = tf.where(
- cond,
- tf.fill(tf.shape(question_number_softmax), 1.0),
- tf.fill(tf.shape(question_number_softmax), 0.0))
- question_number_softmax = tf.cast(question_number_softmax,
- self.data_type)
- ans = tf.reshape(
- tf.reduce_sum(question_number_softmax * tf.concat(
- axis=1, values=[self.batch_question_number, self.batch_question_number_one]),
- 1), [self.batch_size, 1])
- return ans
- def compute_op_position(op_name):
- for i in range(len(self.utility.operations_set)):
- if (op_name == self.utility.operations_set[i]):
- return i
- def compute_question_number(op_name):
- op_embedding = tf.nn.embedding_lookup(self.params_unit,
- compute_op_position(op_name))
- return compute_ans(op_embedding, op_name)
- curr_greater_question_number = compute_question_number("greater")
- curr_lesser_question_number = compute_question_number("lesser")
- curr_geq_question_number = compute_question_number("geq")
- curr_leq_question_number = compute_question_number("leq")
- return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number
- def perform_attention(self, context_vector, hidden_vectors, length, mask):
- #Performs attention on hiddent_vectors using context vector
- context_vector = tf.tile(
- tf.expand_dims(context_vector, 0), [length, 1, 1]) #time * bs * d
- attention_softmax = tf.nn.softmax(
- tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) +
- mask) #batch_size * time
- attention_softmax = tf.tile(
- tf.expand_dims(tf.transpose(attention_softmax), 2),
- [1, 1, self.embedding_dims])
- ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0)
- return ans_vector
- #computes embeddings for column names using parameters of question module
- def get_column_hidden_vectors(self):
- #vector representations for the column names
- self.column_hidden_vectors = tf.reduce_sum(
- nn_utils.get_embedding(self.batch_number_column_names, self.utility,
- self.params), 2)
- self.word_column_hidden_vectors = tf.reduce_sum(
- nn_utils.get_embedding(self.batch_word_column_names, self.utility,
- self.params), 2)
- def create_summary_embeddings(self):
- #embeddings for each text entry in the table using parameters of the question module
- self.summary_text_entry_embeddings = tf.reduce_sum(
- tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims(
- tf.expand_dims(
- tf.expand_dims(
- nn_utils.get_embedding(self.utility.entry_match_token_id,
- self.utility, self.params), 0), 1),
- 2), 2)
- def compute_column_softmax(self, column_controller_vector, time_step):
- #compute softmax over all the columns using column controller vector
- column_controller_vector = tf.tile(
- tf.expand_dims(column_controller_vector, 1),
- [1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d
- column_controller_vector = nn_utils.apply_dropout(
- column_controller_vector, self.utility.FLAGS.dropout, self.mode)
- self.full_column_hidden_vectors = tf.concat(
- axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors])
- self.full_column_hidden_vectors += self.summary_text_entry_embeddings
- self.full_column_hidden_vectors = nn_utils.apply_dropout(
- self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode)
- column_logits = tf.reduce_sum(
- column_controller_vector * self.full_column_hidden_vectors, 2) + (
- self.params["word_match_feature_column_name"] *
- self.batch_column_exact_match) + self.full_column_mask
- column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols
- return column_softmax
- def compute_first_or_last(self, select, first=True):
- #perform first ot last operation on row select with probabilistic row selection
- answer = tf.zeros_like(select)
- running_sum = tf.zeros([self.batch_size, 1], self.data_type)
- for i in range(self.max_elements):
- if (first):
- current = tf.slice(select, [0, i], [self.batch_size, 1])
- else:
- current = tf.slice(select, [0, self.max_elements - 1 - i],
- [self.batch_size, 1])
- curr_prob = current * (1 - running_sum)
- curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
- running_sum += curr_prob
- temp_ans = []
- curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
- for i_ans in range(self.max_elements):
- if (not (first) and i_ans == self.max_elements - 1 - i):
- temp_ans.append(curr_prob)
- elif (first and i_ans == i):
- temp_ans.append(curr_prob)
- else:
- temp_ans.append(tf.zeros_like(curr_prob))
- temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
- answer += temp_ans
- return answer
- def make_hard_softmax(self, softmax):
- #converts soft selection to hard selection. used at test time
- cond = tf.equal(
- softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1]))
- softmax = tf.where(
- cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0))
- softmax = tf.cast(softmax, self.data_type)
- return softmax
- def compute_max_or_min(self, select, maxi=True):
- #computes the argmax and argmin of a column with probabilistic row selection
- answer = tf.zeros([
- self.batch_size, self.num_cols + self.num_word_cols, self.max_elements
- ], self.data_type)
- sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols],
- self.data_type)
- for j in range(self.max_elements):
- if (maxi):
- curr_pos = j
- else:
- curr_pos = self.max_elements - 1 - j
- select_index = tf.slice(self.full_processed_sorted_index_column,
- [0, 0, curr_pos], [self.batch_size, -1, 1])
- select_mask = tf.equal(
- tf.tile(
- tf.expand_dims(
- tf.tile(
- tf.expand_dims(tf.range(self.max_elements), 0),
- [self.batch_size, 1]), 1),
- [1, self.num_cols + self.num_word_cols, 1]), select_index)
- curr_prob = tf.expand_dims(select, 1) * tf.cast(
- select_mask, self.data_type) * self.select_bad_number_mask
- curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2)
- curr_prob = curr_prob * tf.expand_dims(
- tf.cast((1 - sum_prob) > 0.0, self.data_type), 2)
- answer = tf.where(select_mask, curr_prob, answer)
- sum_prob += tf.reduce_sum(curr_prob, 2)
- return answer
- def perform_operations(self, softmax, full_column_softmax, select,
- prev_select_1, curr_pass):
- #performs all the 15 operations. computes scalar output, lookup answer and row selector
- column_softmax = tf.slice(full_column_softmax, [0, 0],
- [self.batch_size, self.num_cols])
- word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols],
- [self.batch_size, self.num_word_cols])
- init_max = self.compute_max_or_min(select, maxi=True)
- init_min = self.compute_max_or_min(select, maxi=False)
- #operations that are column independent
- count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1])
- select_full_column_softmax = tf.tile(
- tf.expand_dims(full_column_softmax, 2),
- [1, 1, self.max_elements
- ]) #BS * (max_cols + max_word_cols) * max_elements
- select_word_column_softmax = tf.tile(
- tf.expand_dims(word_column_softmax, 2),
- [1, 1, self.max_elements]) #BS * max_word_cols * max_elements
- select_greater = tf.reduce_sum(
- self.init_select_greater * select_full_column_softmax,
- 1) * self.batch_question_number_mask #BS * max_elements
- select_lesser = tf.reduce_sum(
- self.init_select_lesser * select_full_column_softmax,
- 1) * self.batch_question_number_mask #BS * max_elements
- select_geq = tf.reduce_sum(
- self.init_select_geq * select_full_column_softmax,
- 1) * self.batch_question_number_mask #BS * max_elements
- select_leq = tf.reduce_sum(
- self.init_select_leq * select_full_column_softmax,
- 1) * self.batch_question_number_mask #BS * max_elements
- select_max = tf.reduce_sum(init_max * select_full_column_softmax,
- 1) #BS * max_elements
- select_min = tf.reduce_sum(init_min * select_full_column_softmax,
- 1) #BS * max_elements
- select_prev = tf.concat(axis=1, values=[
- tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]),
- tf.cast(tf.zeros([self.batch_size, 1]), self.data_type)
- ])
- select_next = tf.concat(axis=1, values=[
- tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice(
- select, [0, 0], [self.batch_size, self.max_elements - 1])
- ])
- select_last_rs = self.compute_first_or_last(select, False)
- select_first_rs = self.compute_first_or_last(select, True)
- select_word_match = tf.reduce_sum(self.batch_exact_match *
- select_full_column_softmax, 1)
- select_group_by_max = tf.reduce_sum(self.batch_group_by_max *
- select_full_column_softmax, 1)
- length_content = 1
- length_select = 13
- length_print = 1
- values = tf.concat(axis=1, values=[count])
- softmax_content = tf.slice(softmax, [0, 0],
- [self.batch_size, length_content])
- #compute scalar output
- output = tf.reduce_sum(tf.multiply(softmax_content, values), 1)
- #compute lookup answer
- softmax_print = tf.slice(softmax, [0, length_content + length_select],
- [self.batch_size, length_print])
- curr_print = select_full_column_softmax * tf.tile(
- tf.expand_dims(select, 1),
- [1, self.num_cols + self.num_word_cols, 1
- ]) #BS * max_cols * max_elements (conisders only column)
- self.batch_lookup_answer = curr_print * tf.tile(
- tf.expand_dims(softmax_print, 2),
- [1, self.num_cols + self.num_word_cols, self.max_elements
- ]) #BS * max_cols * max_elements
- self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask
- #compute row select
- softmax_select = tf.slice(softmax, [0, length_content],
- [self.batch_size, length_select])
- select_lists = [
- tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1),
- tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1),
- tf.expand_dims(select_group_by_max, 1),
- tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1),
- tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1),
- tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1),
- tf.expand_dims(select_word_match, 1),
- tf.expand_dims(self.reset_select, 1)
- ]
- select = tf.reduce_sum(
- tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) *
- tf.concat(axis=1, values=select_lists), 1)
- select = select * self.select_whole_mask
- return output, select
- def one_pass(self, select, question_embedding, hidden_vectors, hprev,
- prev_select_1, curr_pass):
- #Performs one timestep which involves selecting an operation and a column
- attention_vector = self.perform_attention(
- hprev, hidden_vectors, self.question_length,
- self.batch_question_attention_mask) #batch_size * embedding_dims
- controller_vector = tf.nn.relu(
- tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul(
- tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
- "controller"]))
- column_controller_vector = tf.nn.relu(
- tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul(
- tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
- "column_controller"]))
- controller_vector = nn_utils.apply_dropout(
- controller_vector, self.utility.FLAGS.dropout, self.mode)
- self.operation_logits = tf.matmul(controller_vector,
- tf.transpose(self.params_unit))
- softmax = tf.nn.softmax(self.operation_logits)
- soft_softmax = softmax
- #compute column softmax: bs * max_columns
- weighted_op_representation = tf.transpose(
- tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax)))
- column_controller_vector = tf.nn.relu(
- tf.matmul(
- tf.concat(axis=1, values=[
- column_controller_vector, weighted_op_representation
- ]), self.params["break_conditional"]))
- full_column_softmax = self.compute_column_softmax(column_controller_vector,
- curr_pass)
- soft_column_softmax = full_column_softmax
- if (self.mode == "test"):
- full_column_softmax = self.make_hard_softmax(full_column_softmax)
- softmax = self.make_hard_softmax(softmax)
- output, select = self.perform_operations(softmax, full_column_softmax,
- select, prev_select_1, curr_pass)
- return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax
- def compute_lookup_error(self, val):
- #computes lookup error.
- cond = tf.equal(self.batch_print_answer, val)
- inter = tf.where(
- cond, self.init_print_error,
- tf.tile(
- tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [
- self.batch_size, self.utility.FLAGS.max_word_cols +
- self.utility.FLAGS.max_number_cols,
- self.utility.FLAGS.max_elements
- ]))
- return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast(
- tf.greater(
- tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1),
- 0.0), self.data_type)
- def soft_min(self, x, y):
- return tf.maximum(-1.0 * (1 / (
- self.utility.FLAGS.soft_min_value + 0.0)) * tf.log(
- tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp(
- -self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x))
- def error_computation(self):
- #computes the error of each example in a batch
- math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer))
- #scale math error
- math_error = math_error / self.rows
- math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error *
- tf.ones(tf.shape(math_error), self.data_type))
- self.init_print_error = tf.where(
- self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 +
- self.invert_select_full_mask), -1 *
- tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask
- print_error_1 = self.init_print_error * tf.cast(
- tf.equal(self.batch_print_answer, 0.0), self.data_type)
- print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1)
- for val in range(1, 58):
- print_error += self.compute_lookup_error(val + 0.0)
- print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries
- if (self.mode == "train"):
- error = tf.where(
- tf.logical_and(
- tf.not_equal(self.batch_answer, 0.0),
- tf.not_equal(
- tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1),
- 0.0)),
- self.soft_min(math_error, print_error),
- tf.where(
- tf.not_equal(self.batch_answer, 0.0), math_error, print_error))
- else:
- error = tf.where(
- tf.logical_and(
- tf.equal(self.scalar_output, 0.0),
- tf.equal(
- tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1),
- 0.0)),
- tf.ones_like(math_error),
- tf.where(
- tf.equal(self.scalar_output, 0.0), print_error, math_error))
- return error
- def batch_process(self):
- #Computes loss and fraction of correct examples in a batch.
- self.params_unit = nn_utils.apply_dropout(
- self.params["unit"], self.utility.FLAGS.dropout, self.mode)
- batch_size = self.batch_size
- max_passes = self.max_passes
- num_timesteps = 1
- max_elements = self.max_elements
- select = tf.cast(
- tf.fill([self.batch_size, max_elements], 1.0), self.data_type)
- hprev = tf.cast(
- tf.fill([self.batch_size, self.embedding_dims], 0.0),
- self.data_type) #running sum of the hidden states of the model
- output = tf.cast(tf.fill([self.batch_size, 1], 0.0),
- self.data_type) #output of the model
- correct = tf.cast(
- tf.fill([1], 0.0), self.data_type
- ) #to compute accuracy, returns number of correct examples for this batch
- total_error = 0.0
- prev_select_1 = tf.zeros_like(select)
- self.create_summary_embeddings()
- self.get_column_hidden_vectors()
- #get question embedding
- question_embedding, hidden_vectors = self.LSTM_question_embedding(
- self.batch_question, self.question_length)
- #compute arguments for comparison operation
- greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax(
- hidden_vectors)
- self.init_select_greater = tf.cast(
- tf.greater(self.full_processed_column,
- tf.expand_dims(greater_question_number, 2)), self.
- data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
- self.init_select_lesser = tf.cast(
- tf.less(self.full_processed_column,
- tf.expand_dims(lesser_question_number, 2)), self.
- data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
- self.init_select_geq = tf.cast(
- tf.greater_equal(self.full_processed_column,
- tf.expand_dims(geq_question_number, 2)), self.
- data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
- self.init_select_leq = tf.cast(
- tf.less_equal(self.full_processed_column,
- tf.expand_dims(leq_question_number, 2)), self.
- data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
- self.init_select_word_match = 0
- if (self.utility.FLAGS.rnn_dropout > 0.0):
- if (self.mode == "train"):
- history_rnn_dropout_mask = tf.cast(
- tf.random_uniform(
- tf.shape(hprev), minval=0.0, maxval=1.0) <
- self.utility.FLAGS.rnn_dropout,
- self.data_type) / self.utility.FLAGS.rnn_dropout
- else:
- history_rnn_dropout_mask = tf.ones_like(hprev)
- select = select * self.select_whole_mask
- self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type)
- #Perform max_passes and at each pass select operation and column
- for curr_pass in range(max_passes):
- print "step: ", curr_pass
- output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass(
- select, question_embedding, hidden_vectors, hprev, prev_select_1,
- curr_pass)
- prev_select_1 = select
- #compute input to history RNN
- input_op = tf.transpose(
- tf.matmul(
- tf.transpose(self.params_unit), tf.transpose(
- soft_softmax))) #weighted average of emebdding of operations
- input_col = tf.reduce_sum(
- tf.expand_dims(soft_column_softmax, 2) *
- self.full_column_hidden_vectors, 1)
- history_input = tf.concat(axis=1, values=[input_op, input_col])
- history_input = nn_utils.apply_dropout(
- history_input, self.utility.FLAGS.dropout, self.mode)
- hprev = self.history_recurrent_step(history_input, hprev)
- if (self.utility.FLAGS.rnn_dropout > 0.0):
- hprev = hprev * history_rnn_dropout_mask
- self.scalar_output = output
- error = self.error_computation()
- cond = tf.less(error, 0.0001, name="cond")
- correct_add = tf.where(
- cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0))
- correct = tf.reduce_sum(correct_add)
- error = error / batch_size
- total_error = tf.reduce_sum(error)
- total_correct = correct / batch_size
- return total_error, total_correct
- def compute_error(self):
- #Sets mask variables and performs batch processing
- self.batch_gold_select = self.batch_print_answer > 0.0
- self.full_column_mask = tf.concat(
- axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask])
- self.full_processed_column = tf.concat(
- axis=1,
- values=[self.batch_processed_number_column, self.batch_processed_word_column])
- self.full_processed_sorted_index_column = tf.concat(axis=1, values=[
- self.batch_processed_sorted_index_number_column,
- self.batch_processed_sorted_index_word_column
- ])
- self.select_bad_number_mask = tf.cast(
- tf.logical_and(
- tf.not_equal(self.full_processed_column,
- self.utility.FLAGS.pad_int),
- tf.not_equal(self.full_processed_column,
- self.utility.FLAGS.bad_number_pre_process)),
- self.data_type)
- self.select_mask = tf.cast(
- tf.logical_not(
- tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)),
- self.data_type)
- self.select_word_mask = tf.cast(
- tf.logical_not(
- tf.equal(self.batch_word_column_entry_mask,
- self.utility.dummy_token_id)), self.data_type)
- self.select_full_mask = tf.concat(
- axis=1, values=[self.select_mask, self.select_word_mask])
- self.select_whole_mask = tf.maximum(
- tf.reshape(
- tf.slice(self.select_mask, [0, 0, 0],
- [self.batch_size, 1, self.max_elements]),
- [self.batch_size, self.max_elements]),
- tf.reshape(
- tf.slice(self.select_word_mask, [0, 0, 0],
- [self.batch_size, 1, self.max_elements]),
- [self.batch_size, self.max_elements]))
- self.invert_select_full_mask = tf.cast(
- tf.concat(axis=1, values=[
- tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int),
- tf.equal(self.batch_word_column_entry_mask,
- self.utility.dummy_token_id)
- ]), self.data_type)
- self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select))
- self.reset_select = self.select_whole_mask
- self.rows = tf.reduce_sum(self.select_whole_mask, 1)
- self.num_entries = tf.reshape(
- tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1),
- [self.batch_size])
- self.final_error, self.final_correct = self.batch_process()
- return self.final_error
- def create_graph(self, params, global_step):
- #Creates the graph to compute error, gradient computation and updates parameters
- self.params = params
- batch_size = self.batch_size
- learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type)
- self.total_cost = self.compute_error()
- optimize_params = self.params.values()
- optimize_names = self.params.keys()
- print "optimize params ", optimize_names
- if (self.utility.FLAGS.l2_regularizer > 0.0):
- reg_cost = 0.0
- for ind_param in self.params.keys():
- reg_cost += tf.nn.l2_loss(self.params[ind_param])
- self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost
- grads = tf.gradients(self.total_cost, optimize_params, name="gradients")
- grad_norm = 0.0
- for p, name in zip(grads, optimize_names):
- print "grads: ", p, name
- if isinstance(p, tf.IndexedSlices):
- grad_norm += tf.reduce_sum(p.values * p.values)
- elif not (p == None):
- grad_norm += tf.reduce_sum(p * p)
- grad_norm = tf.sqrt(grad_norm)
- max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype(
- self.utility.np_data_type[self.utility.FLAGS.data_type])
- grad_scale = tf.minimum(
- tf.cast(1.0, self.data_type), max_grad_norm / grad_norm)
- clipped_grads = list()
- for p in grads:
- if isinstance(p, tf.IndexedSlices):
- tmp = p.values * grad_scale
- clipped_grads.append(tf.IndexedSlices(tmp, p.indices))
- elif not (p == None):
- clipped_grads.append(p * grad_scale)
- else:
- clipped_grads.append(p)
- grads = clipped_grads
- self.global_step = global_step
- params_list = self.params.values()
- params_list.append(self.global_step)
- adam = tf.train.AdamOptimizer(
- learning_rate,
- epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type),
- use_locking=True)
- self.step = adam.apply_gradients(zip(grads, optimize_params),
- global_step=self.global_step)
- self.init_op = tf.global_variables_initializer()
|