123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """CIFAR dataset input module.
- """
- import tensorflow as tf
- def build_input(dataset, data_path, batch_size, mode):
- """Build CIFAR image and labels.
- Args:
- dataset: Either 'cifar10' or 'cifar100'.
- data_path: Filename for data.
- batch_size: Input batch size.
- mode: Either 'train' or 'eval'.
- Returns:
- images: Batches of images. [batch_size, image_size, image_size, 3]
- labels: Batches of labels. [batch_size, num_classes]
- Raises:
- ValueError: when the specified dataset is not supported.
- """
- image_size = 32
- if dataset == 'cifar10':
- label_bytes = 1
- label_offset = 0
- num_classes = 10
- elif dataset == 'cifar100':
- label_bytes = 1
- label_offset = 1
- num_classes = 100
- else:
- raise ValueError('Not supported dataset %s', dataset)
- depth = 3
- image_bytes = image_size * image_size * depth
- record_bytes = label_bytes + label_offset + image_bytes
- data_files = tf.gfile.Glob(data_path)
- file_queue = tf.train.string_input_producer(data_files, shuffle=True)
- # Read examples from files in the filename queue.
- reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
- _, value = reader.read(file_queue)
- # Convert these examples to dense labels and processed images.
- record = tf.reshape(tf.decode_raw(value, tf.uint8), [record_bytes])
- label = tf.cast(tf.slice(record, [label_offset], [label_bytes]), tf.int32)
- # Convert from string to [depth * height * width] to [depth, height, width].
- depth_major = tf.reshape(tf.slice(record, [label_bytes], [image_bytes]),
- [depth, image_size, image_size])
- # Convert from [depth, height, width] to [height, width, depth].
- image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
- if mode == 'train':
- image = tf.image.resize_image_with_crop_or_pad(
- image, image_size+4, image_size+4)
- image = tf.random_crop(image, [image_size, image_size, 3])
- image = tf.image.random_flip_left_right(image)
- # Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
- # image = tf.image.random_brightness(image, max_delta=63. / 255.)
- # image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
- # image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
- image = tf.image.per_image_standardization(image)
- example_queue = tf.RandomShuffleQueue(
- capacity=16 * batch_size,
- min_after_dequeue=8 * batch_size,
- dtypes=[tf.float32, tf.int32],
- shapes=[[image_size, image_size, depth], [1]])
- num_threads = 16
- else:
- image = tf.image.resize_image_with_crop_or_pad(
- image, image_size, image_size)
- image = tf.image.per_image_standardization(image)
- example_queue = tf.FIFOQueue(
- 3 * batch_size,
- dtypes=[tf.float32, tf.int32],
- shapes=[[image_size, image_size, depth], [1]])
- num_threads = 1
- example_enqueue_op = example_queue.enqueue([image, label])
- tf.train.add_queue_runner(tf.train.queue_runner.QueueRunner(
- example_queue, [example_enqueue_op] * num_threads))
- # Read 'batch' labels + images from the example queue.
- images, labels = example_queue.dequeue_many(batch_size)
- labels = tf.reshape(labels, [batch_size, 1])
- indices = tf.reshape(tf.range(0, batch_size, 1), [batch_size, 1])
- labels = tf.sparse_to_dense(
- tf.concat(values=[indices, labels], axis=1),
- [batch_size, num_classes], 1.0, 0.0)
- assert len(images.get_shape()) == 4
- assert images.get_shape()[0] == batch_size
- assert images.get_shape()[-1] == 3
- assert len(labels.get_shape()) == 2
- assert labels.get_shape()[0] == batch_size
- assert labels.get_shape()[1] == num_classes
- # Display the training images in the visualizer.
- tf.summary.image('images', images)
- return images, labels
|