123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """ResNet model.
- Related papers:
- https://arxiv.org/pdf/1603.05027v2.pdf
- https://arxiv.org/pdf/1512.03385v1.pdf
- https://arxiv.org/pdf/1605.07146v1.pdf
- """
- from collections import namedtuple
- import numpy as np
- import tensorflow as tf
- import six
- from tensorflow.python.training import moving_averages
- HParams = namedtuple('HParams',
- 'batch_size, num_classes, min_lrn_rate, lrn_rate, '
- 'num_residual_units, use_bottleneck, weight_decay_rate, '
- 'relu_leakiness, optimizer')
- class ResNet(object):
- """ResNet model."""
- def __init__(self, hps, images, labels, mode):
- """ResNet constructor.
- Args:
- hps: Hyperparameters.
- images: Batches of images. [batch_size, image_size, image_size, 3]
- labels: Batches of labels. [batch_size, num_classes]
- mode: One of 'train' and 'eval'.
- """
- self.hps = hps
- self._images = images
- self.labels = labels
- self.mode = mode
- self._extra_train_ops = []
- def build_graph(self):
- """Build a whole graph for the model."""
- self.global_step = tf.contrib.framework.get_or_create_global_step()
- self._build_model()
- if self.mode == 'train':
- self._build_train_op()
- self.summaries = tf.summary.merge_all()
- def _stride_arr(self, stride):
- """Map a stride scalar to the stride array for tf.nn.conv2d."""
- return [1, stride, stride, 1]
- def _build_model(self):
- """Build the core model within the graph."""
- with tf.variable_scope('init'):
- x = self._images
- x = self._conv('init_conv', x, 3, 3, 16, self._stride_arr(1))
- strides = [1, 2, 2]
- activate_before_residual = [True, False, False]
- if self.hps.use_bottleneck:
- res_func = self._bottleneck_residual
- filters = [16, 64, 128, 256]
- else:
- res_func = self._residual
- filters = [16, 16, 32, 64]
- # Uncomment the following codes to use w28-10 wide residual network.
- # It is more memory efficient than very deep residual network and has
- # comparably good performance.
- # https://arxiv.org/pdf/1605.07146v1.pdf
- # filters = [16, 160, 320, 640]
- # Update hps.num_residual_units to 9
- with tf.variable_scope('unit_1_0'):
- x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]),
- activate_before_residual[0])
- for i in six.moves.range(1, self.hps.num_residual_units):
- with tf.variable_scope('unit_1_%d' % i):
- x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)
- with tf.variable_scope('unit_2_0'):
- x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]),
- activate_before_residual[1])
- for i in six.moves.range(1, self.hps.num_residual_units):
- with tf.variable_scope('unit_2_%d' % i):
- x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
- with tf.variable_scope('unit_3_0'):
- x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]),
- activate_before_residual[2])
- for i in six.moves.range(1, self.hps.num_residual_units):
- with tf.variable_scope('unit_3_%d' % i):
- x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)
- with tf.variable_scope('unit_last'):
- x = self._batch_norm('final_bn', x)
- x = self._relu(x, self.hps.relu_leakiness)
- x = self._global_avg_pool(x)
- with tf.variable_scope('logit'):
- logits = self._fully_connected(x, self.hps.num_classes)
- self.predictions = tf.nn.softmax(logits)
- with tf.variable_scope('costs'):
- xent = tf.nn.softmax_cross_entropy_with_logits(
- logits=logits, labels=self.labels)
- self.cost = tf.reduce_mean(xent, name='xent')
- self.cost += self._decay()
- tf.summary.scalar('cost', self.cost)
- def _build_train_op(self):
- """Build training specific ops for the graph."""
- self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
- tf.summary.scalar('learning_rate', self.lrn_rate)
- trainable_variables = tf.trainable_variables()
- grads = tf.gradients(self.cost, trainable_variables)
- if self.hps.optimizer == 'sgd':
- optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
- elif self.hps.optimizer == 'mom':
- optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)
- apply_op = optimizer.apply_gradients(
- zip(grads, trainable_variables),
- global_step=self.global_step, name='train_step')
- train_ops = [apply_op] + self._extra_train_ops
- self.train_op = tf.group(*train_ops)
- # TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py
- def _batch_norm(self, name, x):
- """Batch normalization."""
- with tf.variable_scope(name):
- params_shape = [x.get_shape()[-1]]
- beta = tf.get_variable(
- 'beta', params_shape, tf.float32,
- initializer=tf.constant_initializer(0.0, tf.float32))
- gamma = tf.get_variable(
- 'gamma', params_shape, tf.float32,
- initializer=tf.constant_initializer(1.0, tf.float32))
- if self.mode == 'train':
- mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
- moving_mean = tf.get_variable(
- 'moving_mean', params_shape, tf.float32,
- initializer=tf.constant_initializer(0.0, tf.float32),
- trainable=False)
- moving_variance = tf.get_variable(
- 'moving_variance', params_shape, tf.float32,
- initializer=tf.constant_initializer(1.0, tf.float32),
- trainable=False)
- self._extra_train_ops.append(moving_averages.assign_moving_average(
- moving_mean, mean, 0.9))
- self._extra_train_ops.append(moving_averages.assign_moving_average(
- moving_variance, variance, 0.9))
- else:
- mean = tf.get_variable(
- 'moving_mean', params_shape, tf.float32,
- initializer=tf.constant_initializer(0.0, tf.float32),
- trainable=False)
- variance = tf.get_variable(
- 'moving_variance', params_shape, tf.float32,
- initializer=tf.constant_initializer(1.0, tf.float32),
- trainable=False)
- tf.summary.histogram(mean.op.name, mean)
- tf.summary.histogram(variance.op.name, variance)
- # elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net.
- y = tf.nn.batch_normalization(
- x, mean, variance, beta, gamma, 0.001)
- y.set_shape(x.get_shape())
- return y
- def _residual(self, x, in_filter, out_filter, stride,
- activate_before_residual=False):
- """Residual unit with 2 sub layers."""
- if activate_before_residual:
- with tf.variable_scope('shared_activation'):
- x = self._batch_norm('init_bn', x)
- x = self._relu(x, self.hps.relu_leakiness)
- orig_x = x
- else:
- with tf.variable_scope('residual_only_activation'):
- orig_x = x
- x = self._batch_norm('init_bn', x)
- x = self._relu(x, self.hps.relu_leakiness)
- with tf.variable_scope('sub1'):
- x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
- with tf.variable_scope('sub2'):
- x = self._batch_norm('bn2', x)
- x = self._relu(x, self.hps.relu_leakiness)
- x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
- with tf.variable_scope('sub_add'):
- if in_filter != out_filter:
- orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
- orig_x = tf.pad(
- orig_x, [[0, 0], [0, 0], [0, 0],
- [(out_filter-in_filter)//2, (out_filter-in_filter)//2]])
- x += orig_x
- tf.logging.debug('image after unit %s', x.get_shape())
- return x
- def _bottleneck_residual(self, x, in_filter, out_filter, stride,
- activate_before_residual=False):
- """Bottleneck residual unit with 3 sub layers."""
- if activate_before_residual:
- with tf.variable_scope('common_bn_relu'):
- x = self._batch_norm('init_bn', x)
- x = self._relu(x, self.hps.relu_leakiness)
- orig_x = x
- else:
- with tf.variable_scope('residual_bn_relu'):
- orig_x = x
- x = self._batch_norm('init_bn', x)
- x = self._relu(x, self.hps.relu_leakiness)
- with tf.variable_scope('sub1'):
- x = self._conv('conv1', x, 1, in_filter, out_filter/4, stride)
- with tf.variable_scope('sub2'):
- x = self._batch_norm('bn2', x)
- x = self._relu(x, self.hps.relu_leakiness)
- x = self._conv('conv2', x, 3, out_filter/4, out_filter/4, [1, 1, 1, 1])
- with tf.variable_scope('sub3'):
- x = self._batch_norm('bn3', x)
- x = self._relu(x, self.hps.relu_leakiness)
- x = self._conv('conv3', x, 1, out_filter/4, out_filter, [1, 1, 1, 1])
- with tf.variable_scope('sub_add'):
- if in_filter != out_filter:
- orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
- x += orig_x
- tf.logging.info('image after unit %s', x.get_shape())
- return x
- def _decay(self):
- """L2 weight decay loss."""
- costs = []
- for var in tf.trainable_variables():
- if var.op.name.find(r'DW') > 0:
- costs.append(tf.nn.l2_loss(var))
- # tf.summary.histogram(var.op.name, var)
- return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))
- def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
- """Convolution."""
- with tf.variable_scope(name):
- n = filter_size * filter_size * out_filters
- kernel = tf.get_variable(
- 'DW', [filter_size, filter_size, in_filters, out_filters],
- tf.float32, initializer=tf.random_normal_initializer(
- stddev=np.sqrt(2.0/n)))
- return tf.nn.conv2d(x, kernel, strides, padding='SAME')
- def _relu(self, x, leakiness=0.0):
- """Relu, with optional leaky support."""
- return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
- def _fully_connected(self, x, out_dim):
- """FullyConnected layer for final output."""
- x = tf.reshape(x, [self.hps.batch_size, -1])
- w = tf.get_variable(
- 'DW', [x.get_shape()[1], out_dim],
- initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
- b = tf.get_variable('biases', [out_dim],
- initializer=tf.constant_initializer())
- return tf.nn.xw_plus_b(x, w, b)
- def _global_avg_pool(self, x):
- assert x.get_shape().ndims == 4
- return tf.reduce_mean(x, [1, 2])
|