123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Provides utilities to preprocess images in CIFAR-10.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- _PADDING = 4
- slim = tf.contrib.slim
- def preprocess_for_train(image,
- output_height,
- output_width,
- padding=_PADDING):
- """Preprocesses the given image for training.
- Note that the actual resizing scale is sampled from
- [`resize_size_min`, `resize_size_max`].
- Args:
- image: A `Tensor` representing an image of arbitrary size.
- output_height: The height of the image after preprocessing.
- output_width: The width of the image after preprocessing.
- padding: The amound of padding before and after each dimension of the image.
- Returns:
- A preprocessed image.
- """
- tf.summary.image('image', tf.expand_dims(image, 0))
- # Transform the image to floats.
- image = tf.to_float(image)
- if padding > 0:
- image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
- # Randomly crop a [height, width] section of the image.
- distorted_image = tf.random_crop(image,
- [output_height, output_width, 3])
- # Randomly flip the image horizontally.
- distorted_image = tf.image.random_flip_left_right(distorted_image)
- tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
- # Because these operations are not commutative, consider randomizing
- # the order their operation.
- distorted_image = tf.image.random_brightness(distorted_image,
- max_delta=63)
- distorted_image = tf.image.random_contrast(distorted_image,
- lower=0.2, upper=1.8)
- # Subtract off the mean and divide by the variance of the pixels.
- return tf.image.per_image_standardization(distorted_image)
- def preprocess_for_eval(image, output_height, output_width):
- """Preprocesses the given image for evaluation.
- Args:
- image: A `Tensor` representing an image of arbitrary size.
- output_height: The height of the image after preprocessing.
- output_width: The width of the image after preprocessing.
- Returns:
- A preprocessed image.
- """
- tf.summary.image('image', tf.expand_dims(image, 0))
- # Transform the image to floats.
- image = tf.to_float(image)
- # Resize and crop if needed.
- resized_image = tf.image.resize_image_with_crop_or_pad(image,
- output_width,
- output_height)
- tf.summary.image('resized_image', tf.expand_dims(resized_image, 0))
- # Subtract off the mean and divide by the variance of the pixels.
- return tf.image.per_image_standardization(resized_image)
- def preprocess_image(image, output_height, output_width, is_training=False):
- """Preprocesses the given image.
- Args:
- image: A `Tensor` representing an image of arbitrary size.
- output_height: The height of the image after preprocessing.
- output_width: The width of the image after preprocessing.
- is_training: `True` if we're preprocessing the image for training and
- `False` otherwise.
- Returns:
- A preprocessed image.
- """
- if is_training:
- return preprocess_for_train(image, output_height, output_width)
- else:
- return preprocess_for_eval(image, output_height, output_width)
|