123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Provides utilities for preprocessing."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- slim = tf.contrib.slim
- def preprocess_image(image, output_height, output_width, is_training):
- """Preprocesses the given image.
- Args:
- image: A `Tensor` representing an image of arbitrary size.
- output_height: The height of the image after preprocessing.
- output_width: The width of the image after preprocessing.
- is_training: `True` if we're preprocessing the image for training and
- `False` otherwise.
- Returns:
- A preprocessed image.
- """
- image = tf.to_float(image)
- image = tf.image.resize_image_with_crop_or_pad(
- image, output_width, output_height)
- image = tf.subtract(image, 128.0)
- image = tf.div(image, 128.0)
- return image
|