12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Contains a factory for building various models."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from preprocessing import cifarnet_preprocessing
- from preprocessing import inception_preprocessing
- from preprocessing import lenet_preprocessing
- from preprocessing import vgg_preprocessing
- slim = tf.contrib.slim
- def get_preprocessing(name, is_training=False):
- """Returns preprocessing_fn(image, height, width, **kwargs).
- Args:
- name: The name of the preprocessing function.
- is_training: `True` if the model is being used for training and `False`
- otherwise.
- Returns:
- preprocessing_fn: A function that preprocessing a single image (pre-batch).
- It has the following signature:
- image = preprocessing_fn(image, output_height, output_width, ...).
- Raises:
- ValueError: If Preprocessing `name` is not recognized.
- """
- preprocessing_fn_map = {
- 'cifarnet': cifarnet_preprocessing,
- 'inception': inception_preprocessing,
- 'inception_v1': inception_preprocessing,
- 'inception_v2': inception_preprocessing,
- 'inception_v3': inception_preprocessing,
- 'inception_v4': inception_preprocessing,
- 'inception_resnet_v2': inception_preprocessing,
- 'lenet': lenet_preprocessing,
- 'resnet_v1_50': vgg_preprocessing,
- 'resnet_v1_101': vgg_preprocessing,
- 'resnet_v1_152': vgg_preprocessing,
- 'resnet_v2_50': vgg_preprocessing,
- 'resnet_v2_101': vgg_preprocessing,
- 'resnet_v2_152': vgg_preprocessing,
- 'vgg': vgg_preprocessing,
- 'vgg_a': vgg_preprocessing,
- 'vgg_16': vgg_preprocessing,
- 'vgg_19': vgg_preprocessing,
- }
- if name not in preprocessing_fn_map:
- raise ValueError('Preprocessing name [%s] was not recognized' % name)
- def preprocessing_fn(image, output_height, output_width, **kwargs):
- return preprocessing_fn_map[name].preprocess_image(
- image, output_height, output_width, is_training=is_training, **kwargs)
- return preprocessing_fn
|