123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- #!/bin/bash
- #
- # This script performs the following operations:
- # 1. Downloads the Flowers dataset
- # 2. Fine-tunes a ResNetV1-50 model on the Flowers training set.
- # 3. Evaluates the model on the Flowers validation set.
- #
- # Usage:
- # cd slim
- # ./slim/scripts/finetune_resnet_v1_50_on_flowers.sh
- # Where the pre-trained ResNetV1-50 checkpoint is saved to.
- PRETRAINED_CHECKPOINT_DIR=/tmp/checkpoints
- # Where the training (fine-tuned) checkpoint and logs will be saved to.
- TRAIN_DIR=/tmp/flowers-models/resnet_v1_50
- # Where the dataset is saved to.
- DATASET_DIR=/tmp/flowers
- # Download the pre-trained checkpoint.
- if [ ! -d "$PRETRAINED_CHECKPOINT_DIR" ]; then
- mkdir ${PRETRAINED_CHECKPOINT_DIR}
- fi
- if [ ! -f ${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt ]; then
- wget http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
- tar -xvf resnet_v1_50_2016_08_28.tar.gz
- mv resnet_v1_50.ckpt ${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt
- rm resnet_v1_50_2016_08_28.tar.gz
- fi
- # Download the dataset
- python download_and_convert_data.py \
- --dataset_name=flowers \
- --dataset_dir=${DATASET_DIR}
- # Fine-tune only the new layers for 3000 steps.
- python train_image_classifier.py \
- --train_dir=${TRAIN_DIR} \
- --dataset_name=flowers \
- --dataset_split_name=train \
- --dataset_dir=${DATASET_DIR} \
- --model_name=resnet_v1_50 \
- --checkpoint_path=${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt \
- --checkpoint_exclude_scopes=resnet_v1_50/logits \
- --trainable_scopes=resnet_v1_50/logits \
- --max_number_of_steps=3000 \
- --batch_size=32 \
- --learning_rate=0.01 \
- --save_interval_secs=60 \
- --save_summaries_secs=60 \
- --log_every_n_steps=100 \
- --optimizer=rmsprop \
- --weight_decay=0.00004
- # Run evaluation.
- python eval_image_classifier.py \
- --checkpoint_path=${TRAIN_DIR} \
- --eval_dir=${TRAIN_DIR} \
- --dataset_name=flowers \
- --dataset_split_name=validation \
- --dataset_dir=${DATASET_DIR} \
- --model_name=resnet_v1_50
- # Fine-tune all the new layers for 1000 steps.
- python train_image_classifier.py \
- --train_dir=${TRAIN_DIR}/all \
- --dataset_name=flowers \
- --dataset_split_name=train \
- --dataset_dir=${DATASET_DIR} \
- --checkpoint_path=${TRAIN_DIR} \
- --model_name=resnet_v1_50 \
- --max_number_of_steps=1000 \
- --batch_size=32 \
- --learning_rate=0.001 \
- --save_interval_secs=60 \
- --save_summaries_secs=60 \
- --log_every_n_steps=100 \
- --optimizer=rmsprop \
- --weight_decay=0.00004
- # Run evaluation.
- python eval_image_classifier.py \
- --checkpoint_path=${TRAIN_DIR}/all \
- --eval_dir=${TRAIN_DIR}/all \
- --dataset_name=flowers \
- --dataset_split_name=validation \
- --dataset_dir=${DATASET_DIR} \
- --model_name=resnet_v1_50
|