1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- #!/bin/bash
- #
- # This script performs the following operations:
- # 1. Downloads the Cifar10 dataset
- # 2. Trains a CifarNet model on the Cifar10 training set.
- # 3. Evaluates the model on the Cifar10 testing set.
- #
- # Usage:
- # cd slim
- # ./scripts/train_cifar_net_on_mnist.sh
- # Where the checkpoint and logs will be saved to.
- TRAIN_DIR=/tmp/cifarnet-model
- # Where the dataset is saved to.
- DATASET_DIR=/tmp/cifar10
- # Download the dataset
- python download_and_convert_data.py \
- --dataset_name=cifar10 \
- --dataset_dir=${DATASET_DIR}
- # Run training.
- python train_image_classifier.py \
- --train_dir=${TRAIN_DIR} \
- --dataset_name=cifar10 \
- --dataset_split_name=train \
- --dataset_dir=${DATASET_DIR} \
- --model_name=cifarnet \
- --preprocessing_name=cifarnet \
- --max_number_of_steps=100000 \
- --batch_size=128 \
- --save_interval_secs=120 \
- --save_summaries_secs=120 \
- --log_every_n_steps=100 \
- --optimizer=sgd \
- --learning_rate=0.1 \
- --learning_rate_decay_factor=0.1 \
- --num_epochs_per_decay=200 \
- --weight_decay=0.004
- # Run evaluation.
- python eval_image_classifier.py \
- --checkpoint_path=${TRAIN_DIR} \
- --eval_dir=${TRAIN_DIR} \
- --dataset_name=cifar10 \
- --dataset_split_name=test \
- --dataset_dir=${DATASET_DIR} \
- --model_name=cifarnet
|