123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for shapes."""
- import numpy as np
- import tensorflow as tf
- import shapes
- def _rand(*size):
- return np.random.uniform(size=size).astype('f')
- class ShapesTest(tf.test.TestCase):
- """Tests just the shapes from a call to transposing_reshape."""
- def __init__(self, other):
- super(ShapesTest, self).__init__(other)
- self.batch_size = 4
- self.im_height = 24
- self.im_width = 36
- self.depth = 20
- def testReshapeTile(self):
- """Tests that a tiled input can be reshaped to the batch dimension."""
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, self.depth), name='inputs')
- real = _rand(self.batch_size, self.im_height, self.im_width, self.depth)
- with self.test_session() as sess:
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=3, part_b=-1, dest_dim_a=0, dest_dim_b=2)
- res_image = sess.run([outputs], feed_dict={fake: real})
- self.assertEqual(
- tuple(res_image[0].shape),
- (self.batch_size * 3, self.im_height, self.im_width / 3, self.depth))
- def testReshapeDepth(self):
- """Tests that depth can be reshaped to the x dimension."""
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, self.depth), name='inputs')
- real = _rand(self.batch_size, self.im_height, self.im_width, self.depth)
- with self.test_session() as sess:
- outputs = shapes.transposing_reshape(
- fake, src_dim=3, part_a=4, part_b=-1, dest_dim_a=2, dest_dim_b=3)
- res_image = sess.run([outputs], feed_dict={fake: real})
- self.assertEqual(
- tuple(res_image[0].shape),
- (self.batch_size, self.im_height, self.im_width * 4, self.depth / 4))
- class DataTest(tf.test.TestCase):
- """Tests that the data is moved correctly in a call to transposing_reshape.
- """
- def testTransposingReshape_2_2_3_2_1(self):
- """Case: dest_a == src, dest_b < src: Split with Least sig part going left.
- """
- with self.test_session() as sess:
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, 2), name='inputs')
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=1)
- # Make real inputs. The tensor looks like this:
- # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
- # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
- # [[[24, 25]...
- real = np.arange(120).reshape((5, 2, 6, 2))
- np_array = sess.run([outputs], feed_dict={fake: real})[0]
- self.assertEqual(tuple(np_array.shape), (5, 6, 2, 2))
- self.assertAllEqual(np_array[0, :, :, :],
- [[[0, 1], [6, 7]], [[12, 13], [18, 19]],
- [[2, 3], [8, 9]], [[14, 15], [20, 21]],
- [[4, 5], [10, 11]], [[16, 17], [22, 23]]])
- def testTransposingReshape_2_2_3_2_3(self):
- """Case: dest_a == src, dest_b > src: Split with Least sig part going right.
- """
- with self.test_session() as sess:
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, 2), name='inputs')
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=3)
- # Make real inputs. The tensor looks like this:
- # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
- # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
- # [[[24, 25]...
- real = np.arange(120).reshape((5, 2, 6, 2))
- np_array = sess.run([outputs], feed_dict={fake: real})[0]
- self.assertEqual(tuple(np_array.shape), (5, 2, 2, 6))
- self.assertAllEqual(
- np_array[0, :, :, :],
- [[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]],
- [[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]])
- def testTransposingReshape_2_2_3_2_2(self):
- """Case: dest_a == src, dest_b == src. Transpose within dimension 2.
- """
- with self.test_session() as sess:
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, 2), name='inputs')
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=2)
- # Make real inputs. The tensor looks like this:
- # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
- # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
- # [[[24, 25]...
- real = np.arange(120).reshape((5, 2, 6, 2))
- np_array = sess.run([outputs], feed_dict={fake: real})[0]
- self.assertEqual(tuple(np_array.shape), (5, 2, 6, 2))
- self.assertAllEqual(
- np_array[0, :, :, :],
- [[[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]],
- [[12, 13], [18, 19], [14, 15], [20, 21], [16, 17], [22, 23]]])
- def testTransposingReshape_2_2_3_1_2(self):
- """Case: dest_a < src, dest_b == src. Split with Most sig part going left.
- """
- with self.test_session() as sess:
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, 2), name='inputs')
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=1, dest_dim_b=2)
- # Make real inputs. The tensor looks like this:
- # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
- # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
- # [[[24, 25]...
- real = np.arange(120).reshape((5, 2, 6, 2))
- np_array = sess.run([outputs], feed_dict={fake: real})[0]
- self.assertEqual(tuple(np_array.shape), (5, 4, 3, 2))
- self.assertAllEqual(np_array[0, :, :, :],
- [[[0, 1], [2, 3], [4, 5]],
- [[12, 13], [14, 15], [16, 17]],
- [[6, 7], [8, 9], [10, 11]],
- [[18, 19], [20, 21], [22, 23]]])
- def testTransposingReshape_2_2_3_3_2(self):
- """Case: dest_a < src, dest_b == src. Split with Most sig part going right.
- """
- with self.test_session() as sess:
- fake = tf.placeholder(
- tf.float32, shape=(None, None, None, 2), name='inputs')
- outputs = shapes.transposing_reshape(
- fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=3, dest_dim_b=2)
- # Make real inputs. The tensor looks like this:
- # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
- # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
- # [[[24, 25]...
- real = np.arange(120).reshape((5, 2, 6, 2))
- np_array = sess.run([outputs], feed_dict={fake: real})[0]
- self.assertEqual(tuple(np_array.shape), (5, 2, 3, 4))
- self.assertAllEqual(
- np_array[0, :, :, :],
- [[[0, 1, 6, 7], [2, 3, 8, 9], [4, 5, 10, 11]],
- [[12, 13, 18, 19], [14, 15, 20, 21], [16, 17, 22, 23]]])
- if __name__ == '__main__':
- tf.test.main()
|