123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- # Copyright 2017 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Parser evaluation utils."""
- from __future__ import division
- import tensorflow as tf
- from syntaxnet import sentence_pb2
- from syntaxnet.util import check
- def calculate_parse_metrics(gold_corpus, annotated_corpus):
- """Calculate POS/UAS/LAS accuracy based on gold and annotated sentences."""
- check.Eq(len(gold_corpus), len(annotated_corpus), 'Corpora are not aligned')
- num_tokens = 0
- num_correct_pos = 0
- num_correct_uas = 0
- num_correct_las = 0
- for gold_str, annotated_str in zip(gold_corpus, annotated_corpus):
- gold = sentence_pb2.Sentence()
- annotated = sentence_pb2.Sentence()
- gold.ParseFromString(gold_str)
- annotated.ParseFromString(annotated_str)
- check.Eq(gold.text, annotated.text, 'Text is not aligned')
- check.Eq(len(gold.token), len(annotated.token), 'Tokens are not aligned')
- tokens = zip(gold.token, annotated.token)
- num_tokens += len(tokens)
- num_correct_pos += sum(1 for x, y in tokens if x.tag == y.tag)
- num_correct_uas += sum(1 for x, y in tokens if x.head == y.head)
- num_correct_las += sum(1 for x, y in tokens
- if x.head == y.head and x.label == y.label)
- tf.logging.info('Total num documents: %d', len(annotated_corpus))
- tf.logging.info('Total num tokens: %d', num_tokens)
- pos = num_correct_pos * 100.0 / num_tokens
- uas = num_correct_uas * 100.0 / num_tokens
- las = num_correct_las * 100.0 / num_tokens
- tf.logging.info('POS: %.2f%%', pos)
- tf.logging.info('UAS: %.2f%%', uas)
- tf.logging.info('LAS: %.2f%%', las)
- return pos, uas, las
- def parser_summaries(gold_corpus, annotated_corpus):
- """Computes parser evaluation summaries for gold and annotated sentences."""
- pos, uas, las = calculate_parse_metrics(gold_corpus, annotated_corpus)
- return {'POS': pos, 'LAS': las, 'UAS': uas, 'eval_metric': las}
- def calculate_segmentation_metrics(gold_corpus, annotated_corpus):
- """Calculate precision/recall/f1 based on gold and annotated sentences."""
- check.Eq(len(gold_corpus), len(annotated_corpus), 'Corpora are not aligned')
- num_gold_tokens = 0
- num_test_tokens = 0
- num_correct_tokens = 0
- def token_span(token):
- check.Ge(token.end, token.start)
- return (token.start, token.end)
- def ratio(numerator, denominator):
- check.Ge(numerator, 0)
- check.Ge(denominator, 0)
- if denominator > 0:
- return numerator / denominator
- elif numerator == 0:
- return 0.0 # map 0/0 to 0
- else:
- return float('inf') # map x/0 to inf
- for gold_str, annotated_str in zip(gold_corpus, annotated_corpus):
- gold = sentence_pb2.Sentence()
- annotated = sentence_pb2.Sentence()
- gold.ParseFromString(gold_str)
- annotated.ParseFromString(annotated_str)
- check.Eq(gold.text, annotated.text, 'Text is not aligned')
- gold_spans = set()
- test_spans = set()
- for token in gold.token:
- check.NotIn(token_span(token), gold_spans, 'Duplicate token')
- gold_spans.add(token_span(token))
- for token in annotated.token:
- check.NotIn(token_span(token), test_spans, 'Duplicate token')
- test_spans.add(token_span(token))
- num_gold_tokens += len(gold_spans)
- num_test_tokens += len(test_spans)
- num_correct_tokens += len(gold_spans.intersection(test_spans))
- tf.logging.info('Total num documents: %d', len(annotated_corpus))
- tf.logging.info('Total gold tokens: %d', num_gold_tokens)
- tf.logging.info('Total test tokens: %d', num_test_tokens)
- precision = 100 * ratio(num_correct_tokens, num_test_tokens)
- recall = 100 * ratio(num_correct_tokens, num_gold_tokens)
- f1 = ratio(2 * precision * recall, precision + recall)
- tf.logging.info('Precision: %.2f%%', precision)
- tf.logging.info('Recall: %.2f%%', recall)
- tf.logging.info('F1: %.2f%%', f1)
- return round(precision, 2), round(recall, 2), round(f1, 2)
- def segmentation_summaries(gold_corpus, annotated_corpus):
- """Computes segmentation eval summaries for gold and annotated sentences."""
- prec, rec, f1 = calculate_segmentation_metrics(gold_corpus, annotated_corpus)
- return {'precision': prec, 'recall': rec, 'f1': f1, 'eval_metric': f1}
|