dragnn_tutorial_2.html 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <meta charset="utf-8">
  5. </head>
  6. <body>
  7. <script type="text/javascript" src="bundle.js" charset="utf-8"></script>
  8. <div id="09e10a38-13d4-4775-a292-48aea5311d6c"
  9. style="width: 100%; min-width: 200px; height: 300px;">
  10. </div>
  11. <script type='text/javascript'>
  12. visualizeToDiv({
  13. "component_trace": [
  14. {
  15. "name": "tagger",
  16. "step_trace": [
  17. {
  18. "fixed_feature_trace": [
  19. {
  20. "name": "words",
  21. "value_trace": [
  22. {
  23. "feature_name": "",
  24. "value_name": [
  25. "input.word=fair"
  26. ]
  27. }
  28. ]
  29. }
  30. ],
  31. "html_representation": "Stack: | Input: fair ",
  32. "caption": "SHIFT(.)",
  33. "linked_feature_trace": [
  34. {
  35. "name": "rnn",
  36. "source_component": "tagger",
  37. "source_translator": "history",
  38. "source_layer": "layer_0"
  39. }
  40. ],
  41. "step_finished": true
  42. },
  43. {
  44. "fixed_feature_trace": [
  45. {
  46. "name": "words",
  47. "value_trace": [
  48. {
  49. "feature_name": "",
  50. "value_name": [
  51. "input.word=enough"
  52. ]
  53. }
  54. ]
  55. }
  56. ],
  57. "html_representation": "Stack: fair | Input: enough ",
  58. "caption": "SHIFT(.)",
  59. "linked_feature_trace": [
  60. {
  61. "name": "rnn",
  62. "value_trace": [
  63. {
  64. "feature_name": "constant",
  65. "beam_idx": "0",
  66. "batch_idx": "0",
  67. "step_idx": "0",
  68. "feature_value": "0"
  69. }
  70. ],
  71. "source_component": "tagger",
  72. "source_translator": "history",
  73. "source_layer": "layer_0"
  74. }
  75. ],
  76. "step_finished": true
  77. },
  78. {
  79. "fixed_feature_trace": [
  80. {
  81. "name": "words",
  82. "value_trace": [
  83. {
  84. "feature_name": "",
  85. "value_name": [
  86. "input.word=;"
  87. ]
  88. }
  89. ]
  90. }
  91. ],
  92. "html_representation": "Stack: fair enough | Input: ; ",
  93. "caption": "SHIFT(.)",
  94. "linked_feature_trace": [
  95. {
  96. "name": "rnn",
  97. "value_trace": [
  98. {
  99. "feature_name": "constant",
  100. "beam_idx": "0",
  101. "batch_idx": "0",
  102. "step_idx": "1",
  103. "feature_value": "0"
  104. }
  105. ],
  106. "source_component": "tagger",
  107. "source_translator": "history",
  108. "source_layer": "layer_0"
  109. }
  110. ],
  111. "step_finished": true
  112. },
  113. {
  114. "fixed_feature_trace": [
  115. {
  116. "name": "words",
  117. "value_trace": [
  118. {
  119. "feature_name": "",
  120. "value_name": [
  121. "input.word=you"
  122. ]
  123. }
  124. ]
  125. }
  126. ],
  127. "html_representation": "Stack: fair enough ; | Input: you ",
  128. "caption": "SHIFT(.)",
  129. "linked_feature_trace": [
  130. {
  131. "name": "rnn",
  132. "value_trace": [
  133. {
  134. "feature_name": "constant",
  135. "beam_idx": "0",
  136. "batch_idx": "0",
  137. "step_idx": "2",
  138. "feature_value": "0"
  139. }
  140. ],
  141. "source_component": "tagger",
  142. "source_translator": "history",
  143. "source_layer": "layer_0"
  144. }
  145. ],
  146. "step_finished": true
  147. },
  148. {
  149. "fixed_feature_trace": [
  150. {
  151. "name": "words",
  152. "value_trace": [
  153. {
  154. "feature_name": "",
  155. "value_name": [
  156. "input.word=people"
  157. ]
  158. }
  159. ]
  160. }
  161. ],
  162. "html_representation": "Stack: fair enough ; you | Input: people ",
  163. "caption": "SHIFT(.)",
  164. "linked_feature_trace": [
  165. {
  166. "name": "rnn",
  167. "value_trace": [
  168. {
  169. "feature_name": "constant",
  170. "beam_idx": "0",
  171. "batch_idx": "0",
  172. "step_idx": "3",
  173. "feature_value": "0"
  174. }
  175. ],
  176. "source_component": "tagger",
  177. "source_translator": "history",
  178. "source_layer": "layer_0"
  179. }
  180. ],
  181. "step_finished": true
  182. },
  183. {
  184. "fixed_feature_trace": [
  185. {
  186. "name": "words",
  187. "value_trace": [
  188. {
  189. "feature_name": "",
  190. "value_name": [
  191. "input.word=have"
  192. ]
  193. }
  194. ]
  195. }
  196. ],
  197. "html_representation": "Stack: fair enough ; you people | Input: have ",
  198. "caption": "SHIFT(.)",
  199. "linked_feature_trace": [
  200. {
  201. "name": "rnn",
  202. "value_trace": [
  203. {
  204. "feature_name": "constant",
  205. "beam_idx": "0",
  206. "batch_idx": "0",
  207. "step_idx": "4",
  208. "feature_value": "0"
  209. }
  210. ],
  211. "source_component": "tagger",
  212. "source_translator": "history",
  213. "source_layer": "layer_0"
  214. }
  215. ],
  216. "step_finished": true
  217. },
  218. {
  219. "fixed_feature_trace": [
  220. {
  221. "name": "words",
  222. "value_trace": [
  223. {
  224. "feature_name": "",
  225. "value_name": [
  226. "input.word=eaten"
  227. ]
  228. }
  229. ]
  230. }
  231. ],
  232. "html_representation": "Stack: fair enough ; you people have | Input: eaten ",
  233. "caption": "SHIFT(.)",
  234. "linked_feature_trace": [
  235. {
  236. "name": "rnn",
  237. "value_trace": [
  238. {
  239. "feature_name": "constant",
  240. "beam_idx": "0",
  241. "batch_idx": "0",
  242. "step_idx": "5",
  243. "feature_value": "0"
  244. }
  245. ],
  246. "source_component": "tagger",
  247. "source_translator": "history",
  248. "source_layer": "layer_0"
  249. }
  250. ],
  251. "step_finished": true
  252. },
  253. {
  254. "fixed_feature_trace": [
  255. {
  256. "name": "words",
  257. "value_trace": [
  258. {
  259. "feature_name": "",
  260. "value_name": [
  261. "input.word=me"
  262. ]
  263. }
  264. ]
  265. }
  266. ],
  267. "html_representation": "Stack: fair enough ; you people have eaten | Input: me ",
  268. "caption": "SHIFT(.)",
  269. "linked_feature_trace": [
  270. {
  271. "name": "rnn",
  272. "value_trace": [
  273. {
  274. "feature_name": "constant",
  275. "beam_idx": "0",
  276. "batch_idx": "0",
  277. "step_idx": "6",
  278. "feature_value": "0"
  279. }
  280. ],
  281. "source_component": "tagger",
  282. "source_translator": "history",
  283. "source_layer": "layer_0"
  284. }
  285. ],
  286. "step_finished": true
  287. },
  288. {
  289. "fixed_feature_trace": [
  290. {
  291. "name": "words",
  292. "value_trace": [
  293. {
  294. "feature_name": "",
  295. "value_name": [
  296. "input.word=."
  297. ]
  298. }
  299. ]
  300. }
  301. ],
  302. "html_representation": "Stack: fair enough ; you people have eaten me | Input: . ",
  303. "caption": "SHIFT(.)",
  304. "linked_feature_trace": [
  305. {
  306. "name": "rnn",
  307. "value_trace": [
  308. {
  309. "feature_name": "constant",
  310. "beam_idx": "0",
  311. "batch_idx": "0",
  312. "step_idx": "7",
  313. "feature_value": "0"
  314. }
  315. ],
  316. "source_component": "tagger",
  317. "source_translator": "history",
  318. "source_layer": "layer_0"
  319. }
  320. ],
  321. "step_finished": true
  322. },
  323. {
  324. "fixed_feature_trace": [
  325. {
  326. "name": "words"
  327. }
  328. ],
  329. "html_representation": "Stack: fair enough ; you people have eaten me . | Input: ",
  330. "linked_feature_trace": [
  331. {
  332. "name": "rnn",
  333. "source_component": "tagger",
  334. "source_translator": "history",
  335. "source_layer": "layer_0"
  336. }
  337. ]
  338. }
  339. ]
  340. },
  341. {
  342. "name": "parser",
  343. "step_trace": [
  344. {
  345. "html_representation": "Stack: | Input: fair ",
  346. "step_finished": true,
  347. "caption": "SHIFT",
  348. "linked_feature_trace": [
  349. {
  350. "name": "tagger",
  351. "value_trace": [
  352. {
  353. "feature_name": "input.focus",
  354. "beam_idx": "0",
  355. "batch_idx": "0",
  356. "step_idx": "0",
  357. "feature_value": "0"
  358. }
  359. ],
  360. "source_component": "tagger",
  361. "source_translator": "identity",
  362. "source_layer": "logits"
  363. },
  364. {
  365. "name": "rnn-stack",
  366. "source_component": "parser",
  367. "source_translator": "shift-reduce-step",
  368. "source_layer": "layer_0"
  369. }
  370. ]
  371. },
  372. {
  373. "html_representation": "Stack: fair | Input: enough ",
  374. "step_finished": true,
  375. "caption": "SHIFT",
  376. "linked_feature_trace": [
  377. {
  378. "name": "tagger",
  379. "value_trace": [
  380. {
  381. "feature_name": "input.focus",
  382. "beam_idx": "0",
  383. "batch_idx": "0",
  384. "step_idx": "1",
  385. "feature_value": "1"
  386. },
  387. {
  388. "feature_name": "stack.focus",
  389. "beam_idx": "0",
  390. "batch_idx": "0",
  391. "step_idx": "0",
  392. "feature_value": "0"
  393. }
  394. ],
  395. "source_component": "tagger",
  396. "source_translator": "identity",
  397. "source_layer": "logits"
  398. },
  399. {
  400. "name": "rnn-stack",
  401. "value_trace": [
  402. {
  403. "feature_name": "stack.focus",
  404. "beam_idx": "0",
  405. "batch_idx": "0",
  406. "step_idx": "0",
  407. "feature_value": "0"
  408. }
  409. ],
  410. "source_component": "parser",
  411. "source_translator": "shift-reduce-step",
  412. "source_layer": "layer_0"
  413. }
  414. ]
  415. },
  416. {
  417. "html_representation": "Stack: fair enough | Input: ; ",
  418. "step_finished": true,
  419. "caption": "RIGHT_ARC(advmod)",
  420. "linked_feature_trace": [
  421. {
  422. "name": "tagger",
  423. "value_trace": [
  424. {
  425. "feature_name": "input.focus",
  426. "beam_idx": "0",
  427. "batch_idx": "0",
  428. "step_idx": "2",
  429. "feature_value": "2"
  430. },
  431. {
  432. "feature_name": "stack.focus",
  433. "beam_idx": "0",
  434. "batch_idx": "0",
  435. "step_idx": "1",
  436. "feature_value": "1"
  437. },
  438. {
  439. "feature_name": "stack(1).focus",
  440. "beam_idx": "0",
  441. "batch_idx": "0",
  442. "step_idx": "0",
  443. "feature_value": "0"
  444. }
  445. ],
  446. "source_component": "tagger",
  447. "source_translator": "identity",
  448. "source_layer": "logits"
  449. },
  450. {
  451. "name": "rnn-stack",
  452. "value_trace": [
  453. {
  454. "feature_name": "stack.focus",
  455. "beam_idx": "0",
  456. "batch_idx": "0",
  457. "step_idx": "1",
  458. "feature_value": "1"
  459. },
  460. {
  461. "feature_name": "stack(1).focus",
  462. "beam_idx": "0",
  463. "batch_idx": "0",
  464. "step_idx": "0",
  465. "feature_value": "0"
  466. }
  467. ],
  468. "source_component": "parser",
  469. "source_translator": "shift-reduce-step",
  470. "source_layer": "layer_0"
  471. }
  472. ]
  473. },
  474. {
  475. "html_representation": "Stack: fair | Input: ; ",
  476. "step_finished": true,
  477. "caption": "SHIFT",
  478. "linked_feature_trace": [
  479. {
  480. "name": "tagger",
  481. "value_trace": [
  482. {
  483. "feature_name": "input.focus",
  484. "beam_idx": "0",
  485. "batch_idx": "0",
  486. "step_idx": "2",
  487. "feature_value": "2"
  488. },
  489. {
  490. "feature_name": "stack.focus",
  491. "beam_idx": "0",
  492. "batch_idx": "0",
  493. "step_idx": "0",
  494. "feature_value": "0"
  495. }
  496. ],
  497. "source_component": "tagger",
  498. "source_translator": "identity",
  499. "source_layer": "logits"
  500. },
  501. {
  502. "name": "rnn-stack",
  503. "value_trace": [
  504. {
  505. "feature_name": "stack.focus",
  506. "beam_idx": "0",
  507. "batch_idx": "0",
  508. "step_idx": "2",
  509. "feature_value": "0"
  510. }
  511. ],
  512. "source_component": "parser",
  513. "source_translator": "shift-reduce-step",
  514. "source_layer": "layer_0"
  515. }
  516. ]
  517. },
  518. {
  519. "html_representation": "Stack: fair ; | Input: you ",
  520. "step_finished": true,
  521. "caption": "RIGHT_ARC(p)",
  522. "linked_feature_trace": [
  523. {
  524. "name": "tagger",
  525. "value_trace": [
  526. {
  527. "feature_name": "input.focus",
  528. "beam_idx": "0",
  529. "batch_idx": "0",
  530. "step_idx": "3",
  531. "feature_value": "3"
  532. },
  533. {
  534. "feature_name": "stack.focus",
  535. "beam_idx": "0",
  536. "batch_idx": "0",
  537. "step_idx": "2",
  538. "feature_value": "2"
  539. },
  540. {
  541. "feature_name": "stack(1).focus",
  542. "beam_idx": "0",
  543. "batch_idx": "0",
  544. "step_idx": "0",
  545. "feature_value": "0"
  546. }
  547. ],
  548. "source_component": "tagger",
  549. "source_translator": "identity",
  550. "source_layer": "logits"
  551. },
  552. {
  553. "name": "rnn-stack",
  554. "value_trace": [
  555. {
  556. "feature_name": "stack.focus",
  557. "beam_idx": "0",
  558. "batch_idx": "0",
  559. "step_idx": "3",
  560. "feature_value": "2"
  561. },
  562. {
  563. "feature_name": "stack(1).focus",
  564. "beam_idx": "0",
  565. "batch_idx": "0",
  566. "step_idx": "2",
  567. "feature_value": "0"
  568. }
  569. ],
  570. "source_component": "parser",
  571. "source_translator": "shift-reduce-step",
  572. "source_layer": "layer_0"
  573. }
  574. ]
  575. },
  576. {
  577. "html_representation": "Stack: fair | Input: you ",
  578. "step_finished": true,
  579. "caption": "SHIFT",
  580. "linked_feature_trace": [
  581. {
  582. "name": "tagger",
  583. "value_trace": [
  584. {
  585. "feature_name": "input.focus",
  586. "beam_idx": "0",
  587. "batch_idx": "0",
  588. "step_idx": "3",
  589. "feature_value": "3"
  590. },
  591. {
  592. "feature_name": "stack.focus",
  593. "beam_idx": "0",
  594. "batch_idx": "0",
  595. "step_idx": "0",
  596. "feature_value": "0"
  597. }
  598. ],
  599. "source_component": "tagger",
  600. "source_translator": "identity",
  601. "source_layer": "logits"
  602. },
  603. {
  604. "name": "rnn-stack",
  605. "value_trace": [
  606. {
  607. "feature_name": "stack.focus",
  608. "beam_idx": "0",
  609. "batch_idx": "0",
  610. "step_idx": "4",
  611. "feature_value": "0"
  612. }
  613. ],
  614. "source_component": "parser",
  615. "source_translator": "shift-reduce-step",
  616. "source_layer": "layer_0"
  617. }
  618. ]
  619. },
  620. {
  621. "html_representation": "Stack: fair you | Input: people ",
  622. "step_finished": true,
  623. "caption": "SHIFT",
  624. "linked_feature_trace": [
  625. {
  626. "name": "tagger",
  627. "value_trace": [
  628. {
  629. "feature_name": "input.focus",
  630. "beam_idx": "0",
  631. "batch_idx": "0",
  632. "step_idx": "4",
  633. "feature_value": "4"
  634. },
  635. {
  636. "feature_name": "stack.focus",
  637. "beam_idx": "0",
  638. "batch_idx": "0",
  639. "step_idx": "3",
  640. "feature_value": "3"
  641. },
  642. {
  643. "feature_name": "stack(1).focus",
  644. "beam_idx": "0",
  645. "batch_idx": "0",
  646. "step_idx": "0",
  647. "feature_value": "0"
  648. }
  649. ],
  650. "source_component": "tagger",
  651. "source_translator": "identity",
  652. "source_layer": "logits"
  653. },
  654. {
  655. "name": "rnn-stack",
  656. "value_trace": [
  657. {
  658. "feature_name": "stack.focus",
  659. "beam_idx": "0",
  660. "batch_idx": "0",
  661. "step_idx": "5",
  662. "feature_value": "3"
  663. },
  664. {
  665. "feature_name": "stack(1).focus",
  666. "beam_idx": "0",
  667. "batch_idx": "0",
  668. "step_idx": "4",
  669. "feature_value": "0"
  670. }
  671. ],
  672. "source_component": "parser",
  673. "source_translator": "shift-reduce-step",
  674. "source_layer": "layer_0"
  675. }
  676. ]
  677. },
  678. {
  679. "html_representation": "Stack: fair you people | Input: have ",
  680. "step_finished": true,
  681. "caption": "LEFT_ARC(dep)",
  682. "linked_feature_trace": [
  683. {
  684. "name": "tagger",
  685. "value_trace": [
  686. {
  687. "feature_name": "input.focus",
  688. "beam_idx": "0",
  689. "batch_idx": "0",
  690. "step_idx": "5",
  691. "feature_value": "5"
  692. },
  693. {
  694. "feature_name": "stack.focus",
  695. "beam_idx": "0",
  696. "batch_idx": "0",
  697. "step_idx": "4",
  698. "feature_value": "4"
  699. },
  700. {
  701. "feature_name": "stack(1).focus",
  702. "beam_idx": "0",
  703. "batch_idx": "0",
  704. "step_idx": "3",
  705. "feature_value": "3"
  706. }
  707. ],
  708. "source_component": "tagger",
  709. "source_translator": "identity",
  710. "source_layer": "logits"
  711. },
  712. {
  713. "name": "rnn-stack",
  714. "value_trace": [
  715. {
  716. "feature_name": "stack.focus",
  717. "beam_idx": "0",
  718. "batch_idx": "0",
  719. "step_idx": "6",
  720. "feature_value": "4"
  721. },
  722. {
  723. "feature_name": "stack(1).focus",
  724. "beam_idx": "0",
  725. "batch_idx": "0",
  726. "step_idx": "5",
  727. "feature_value": "3"
  728. }
  729. ],
  730. "source_component": "parser",
  731. "source_translator": "shift-reduce-step",
  732. "source_layer": "layer_0"
  733. }
  734. ]
  735. },
  736. {
  737. "html_representation": "Stack: fair people | Input: have ",
  738. "step_finished": true,
  739. "caption": "SHIFT",
  740. "linked_feature_trace": [
  741. {
  742. "name": "tagger",
  743. "value_trace": [
  744. {
  745. "feature_name": "input.focus",
  746. "beam_idx": "0",
  747. "batch_idx": "0",
  748. "step_idx": "5",
  749. "feature_value": "5"
  750. },
  751. {
  752. "feature_name": "stack.focus",
  753. "beam_idx": "0",
  754. "batch_idx": "0",
  755. "step_idx": "4",
  756. "feature_value": "4"
  757. },
  758. {
  759. "feature_name": "stack(1).focus",
  760. "beam_idx": "0",
  761. "batch_idx": "0",
  762. "step_idx": "0",
  763. "feature_value": "0"
  764. }
  765. ],
  766. "source_component": "tagger",
  767. "source_translator": "identity",
  768. "source_layer": "logits"
  769. },
  770. {
  771. "name": "rnn-stack",
  772. "value_trace": [
  773. {
  774. "feature_name": "stack.focus",
  775. "beam_idx": "0",
  776. "batch_idx": "0",
  777. "step_idx": "7",
  778. "feature_value": "4"
  779. },
  780. {
  781. "feature_name": "stack(1).focus",
  782. "beam_idx": "0",
  783. "batch_idx": "0",
  784. "step_idx": "4",
  785. "feature_value": "0"
  786. }
  787. ],
  788. "source_component": "parser",
  789. "source_translator": "shift-reduce-step",
  790. "source_layer": "layer_0"
  791. }
  792. ]
  793. },
  794. {
  795. "html_representation": "Stack: fair people have | Input: eaten ",
  796. "step_finished": true,
  797. "caption": "SHIFT",
  798. "linked_feature_trace": [
  799. {
  800. "name": "tagger",
  801. "value_trace": [
  802. {
  803. "feature_name": "input.focus",
  804. "beam_idx": "0",
  805. "batch_idx": "0",
  806. "step_idx": "6",
  807. "feature_value": "6"
  808. },
  809. {
  810. "feature_name": "stack.focus",
  811. "beam_idx": "0",
  812. "batch_idx": "0",
  813. "step_idx": "5",
  814. "feature_value": "5"
  815. },
  816. {
  817. "feature_name": "stack(1).focus",
  818. "beam_idx": "0",
  819. "batch_idx": "0",
  820. "step_idx": "4",
  821. "feature_value": "4"
  822. }
  823. ],
  824. "source_component": "tagger",
  825. "source_translator": "identity",
  826. "source_layer": "logits"
  827. },
  828. {
  829. "name": "rnn-stack",
  830. "value_trace": [
  831. {
  832. "feature_name": "stack.focus",
  833. "beam_idx": "0",
  834. "batch_idx": "0",
  835. "step_idx": "8",
  836. "feature_value": "5"
  837. },
  838. {
  839. "feature_name": "stack(1).focus",
  840. "beam_idx": "0",
  841. "batch_idx": "0",
  842. "step_idx": "7",
  843. "feature_value": "4"
  844. }
  845. ],
  846. "source_component": "parser",
  847. "source_translator": "shift-reduce-step",
  848. "source_layer": "layer_0"
  849. }
  850. ]
  851. },
  852. {
  853. "html_representation": "Stack: fair people have eaten | Input: me ",
  854. "step_finished": true,
  855. "caption": "LEFT_ARC(aux)",
  856. "linked_feature_trace": [
  857. {
  858. "name": "tagger",
  859. "value_trace": [
  860. {
  861. "feature_name": "input.focus",
  862. "beam_idx": "0",
  863. "batch_idx": "0",
  864. "step_idx": "7",
  865. "feature_value": "7"
  866. },
  867. {
  868. "feature_name": "stack.focus",
  869. "beam_idx": "0",
  870. "batch_idx": "0",
  871. "step_idx": "6",
  872. "feature_value": "6"
  873. },
  874. {
  875. "feature_name": "stack(1).focus",
  876. "beam_idx": "0",
  877. "batch_idx": "0",
  878. "step_idx": "5",
  879. "feature_value": "5"
  880. }
  881. ],
  882. "source_component": "tagger",
  883. "source_translator": "identity",
  884. "source_layer": "logits"
  885. },
  886. {
  887. "name": "rnn-stack",
  888. "value_trace": [
  889. {
  890. "feature_name": "stack.focus",
  891. "beam_idx": "0",
  892. "batch_idx": "0",
  893. "step_idx": "9",
  894. "feature_value": "6"
  895. },
  896. {
  897. "feature_name": "stack(1).focus",
  898. "beam_idx": "0",
  899. "batch_idx": "0",
  900. "step_idx": "8",
  901. "feature_value": "5"
  902. }
  903. ],
  904. "source_component": "parser",
  905. "source_translator": "shift-reduce-step",
  906. "source_layer": "layer_0"
  907. }
  908. ]
  909. },
  910. {
  911. "html_representation": "Stack: fair people eaten | Input: me ",
  912. "step_finished": true,
  913. "caption": "LEFT_ARC(nsubj)",
  914. "linked_feature_trace": [
  915. {
  916. "name": "tagger",
  917. "value_trace": [
  918. {
  919. "feature_name": "input.focus",
  920. "beam_idx": "0",
  921. "batch_idx": "0",
  922. "step_idx": "7",
  923. "feature_value": "7"
  924. },
  925. {
  926. "feature_name": "stack.focus",
  927. "beam_idx": "0",
  928. "batch_idx": "0",
  929. "step_idx": "6",
  930. "feature_value": "6"
  931. },
  932. {
  933. "feature_name": "stack(1).focus",
  934. "beam_idx": "0",
  935. "batch_idx": "0",
  936. "step_idx": "4",
  937. "feature_value": "4"
  938. }
  939. ],
  940. "source_component": "tagger",
  941. "source_translator": "identity",
  942. "source_layer": "logits"
  943. },
  944. {
  945. "name": "rnn-stack",
  946. "value_trace": [
  947. {
  948. "feature_name": "stack.focus",
  949. "beam_idx": "0",
  950. "batch_idx": "0",
  951. "step_idx": "10",
  952. "feature_value": "6"
  953. },
  954. {
  955. "feature_name": "stack(1).focus",
  956. "beam_idx": "0",
  957. "batch_idx": "0",
  958. "step_idx": "7",
  959. "feature_value": "4"
  960. }
  961. ],
  962. "source_component": "parser",
  963. "source_translator": "shift-reduce-step",
  964. "source_layer": "layer_0"
  965. }
  966. ]
  967. },
  968. {
  969. "html_representation": "Stack: fair eaten | Input: me ",
  970. "step_finished": true,
  971. "caption": "SHIFT",
  972. "linked_feature_trace": [
  973. {
  974. "name": "tagger",
  975. "value_trace": [
  976. {
  977. "feature_name": "input.focus",
  978. "beam_idx": "0",
  979. "batch_idx": "0",
  980. "step_idx": "7",
  981. "feature_value": "7"
  982. },
  983. {
  984. "feature_name": "stack.focus",
  985. "beam_idx": "0",
  986. "batch_idx": "0",
  987. "step_idx": "6",
  988. "feature_value": "6"
  989. },
  990. {
  991. "feature_name": "stack(1).focus",
  992. "beam_idx": "0",
  993. "batch_idx": "0",
  994. "step_idx": "0",
  995. "feature_value": "0"
  996. }
  997. ],
  998. "source_component": "tagger",
  999. "source_translator": "identity",
  1000. "source_layer": "logits"
  1001. },
  1002. {
  1003. "name": "rnn-stack",
  1004. "value_trace": [
  1005. {
  1006. "feature_name": "stack.focus",
  1007. "beam_idx": "0",
  1008. "batch_idx": "0",
  1009. "step_idx": "11",
  1010. "feature_value": "6"
  1011. },
  1012. {
  1013. "feature_name": "stack(1).focus",
  1014. "beam_idx": "0",
  1015. "batch_idx": "0",
  1016. "step_idx": "4",
  1017. "feature_value": "0"
  1018. }
  1019. ],
  1020. "source_component": "parser",
  1021. "source_translator": "shift-reduce-step",
  1022. "source_layer": "layer_0"
  1023. }
  1024. ]
  1025. },
  1026. {
  1027. "html_representation": "Stack: fair eaten me | Input: . ",
  1028. "step_finished": true,
  1029. "caption": "RIGHT_ARC(dobj)",
  1030. "linked_feature_trace": [
  1031. {
  1032. "name": "tagger",
  1033. "value_trace": [
  1034. {
  1035. "feature_name": "input.focus",
  1036. "beam_idx": "0",
  1037. "batch_idx": "0",
  1038. "step_idx": "8",
  1039. "feature_value": "8"
  1040. },
  1041. {
  1042. "feature_name": "stack.focus",
  1043. "beam_idx": "0",
  1044. "batch_idx": "0",
  1045. "step_idx": "7",
  1046. "feature_value": "7"
  1047. },
  1048. {
  1049. "feature_name": "stack(1).focus",
  1050. "beam_idx": "0",
  1051. "batch_idx": "0",
  1052. "step_idx": "6",
  1053. "feature_value": "6"
  1054. }
  1055. ],
  1056. "source_component": "tagger",
  1057. "source_translator": "identity",
  1058. "source_layer": "logits"
  1059. },
  1060. {
  1061. "name": "rnn-stack",
  1062. "value_trace": [
  1063. {
  1064. "feature_name": "stack.focus",
  1065. "beam_idx": "0",
  1066. "batch_idx": "0",
  1067. "step_idx": "12",
  1068. "feature_value": "7"
  1069. },
  1070. {
  1071. "feature_name": "stack(1).focus",
  1072. "beam_idx": "0",
  1073. "batch_idx": "0",
  1074. "step_idx": "11",
  1075. "feature_value": "6"
  1076. }
  1077. ],
  1078. "source_component": "parser",
  1079. "source_translator": "shift-reduce-step",
  1080. "source_layer": "layer_0"
  1081. }
  1082. ]
  1083. },
  1084. {
  1085. "html_representation": "Stack: fair eaten | Input: . ",
  1086. "step_finished": true,
  1087. "caption": "RIGHT_ARC(parataxis)",
  1088. "linked_feature_trace": [
  1089. {
  1090. "name": "tagger",
  1091. "value_trace": [
  1092. {
  1093. "feature_name": "input.focus",
  1094. "beam_idx": "0",
  1095. "batch_idx": "0",
  1096. "step_idx": "8",
  1097. "feature_value": "8"
  1098. },
  1099. {
  1100. "feature_name": "stack.focus",
  1101. "beam_idx": "0",
  1102. "batch_idx": "0",
  1103. "step_idx": "6",
  1104. "feature_value": "6"
  1105. },
  1106. {
  1107. "feature_name": "stack(1).focus",
  1108. "beam_idx": "0",
  1109. "batch_idx": "0",
  1110. "step_idx": "0",
  1111. "feature_value": "0"
  1112. }
  1113. ],
  1114. "source_component": "tagger",
  1115. "source_translator": "identity",
  1116. "source_layer": "logits"
  1117. },
  1118. {
  1119. "name": "rnn-stack",
  1120. "value_trace": [
  1121. {
  1122. "feature_name": "stack.focus",
  1123. "beam_idx": "0",
  1124. "batch_idx": "0",
  1125. "step_idx": "13",
  1126. "feature_value": "6"
  1127. },
  1128. {
  1129. "feature_name": "stack(1).focus",
  1130. "beam_idx": "0",
  1131. "batch_idx": "0",
  1132. "step_idx": "4",
  1133. "feature_value": "0"
  1134. }
  1135. ],
  1136. "source_component": "parser",
  1137. "source_translator": "shift-reduce-step",
  1138. "source_layer": "layer_0"
  1139. }
  1140. ]
  1141. },
  1142. {
  1143. "html_representation": "Stack: fair | Input: . ",
  1144. "step_finished": true,
  1145. "caption": "SHIFT",
  1146. "linked_feature_trace": [
  1147. {
  1148. "name": "tagger",
  1149. "value_trace": [
  1150. {
  1151. "feature_name": "input.focus",
  1152. "beam_idx": "0",
  1153. "batch_idx": "0",
  1154. "step_idx": "8",
  1155. "feature_value": "8"
  1156. },
  1157. {
  1158. "feature_name": "stack.focus",
  1159. "beam_idx": "0",
  1160. "batch_idx": "0",
  1161. "step_idx": "0",
  1162. "feature_value": "0"
  1163. }
  1164. ],
  1165. "source_component": "tagger",
  1166. "source_translator": "identity",
  1167. "source_layer": "logits"
  1168. },
  1169. {
  1170. "name": "rnn-stack",
  1171. "value_trace": [
  1172. {
  1173. "feature_name": "stack.focus",
  1174. "beam_idx": "0",
  1175. "batch_idx": "0",
  1176. "step_idx": "14",
  1177. "feature_value": "0"
  1178. }
  1179. ],
  1180. "source_component": "parser",
  1181. "source_translator": "shift-reduce-step",
  1182. "source_layer": "layer_0"
  1183. }
  1184. ]
  1185. },
  1186. {
  1187. "html_representation": "Stack: fair . | Input: ",
  1188. "step_finished": true,
  1189. "caption": "RIGHT_ARC(p)",
  1190. "linked_feature_trace": [
  1191. {
  1192. "name": "tagger",
  1193. "value_trace": [
  1194. {
  1195. "feature_name": "stack.focus",
  1196. "beam_idx": "0",
  1197. "batch_idx": "0",
  1198. "step_idx": "8",
  1199. "feature_value": "8"
  1200. },
  1201. {
  1202. "feature_name": "stack(1).focus",
  1203. "beam_idx": "0",
  1204. "batch_idx": "0",
  1205. "step_idx": "0",
  1206. "feature_value": "0"
  1207. }
  1208. ],
  1209. "source_component": "tagger",
  1210. "source_translator": "identity",
  1211. "source_layer": "logits"
  1212. },
  1213. {
  1214. "name": "rnn-stack",
  1215. "value_trace": [
  1216. {
  1217. "feature_name": "stack.focus",
  1218. "beam_idx": "0",
  1219. "batch_idx": "0",
  1220. "step_idx": "15",
  1221. "feature_value": "8"
  1222. },
  1223. {
  1224. "feature_name": "stack(1).focus",
  1225. "beam_idx": "0",
  1226. "batch_idx": "0",
  1227. "step_idx": "14",
  1228. "feature_value": "0"
  1229. }
  1230. ],
  1231. "source_component": "parser",
  1232. "source_translator": "shift-reduce-step",
  1233. "source_layer": "layer_0"
  1234. }
  1235. ]
  1236. },
  1237. {
  1238. "html_representation": "Stack: fair | Input: ",
  1239. "step_finished": true,
  1240. "caption": "RIGHT_ARC(ROOT)",
  1241. "linked_feature_trace": [
  1242. {
  1243. "name": "tagger",
  1244. "value_trace": [
  1245. {
  1246. "feature_name": "stack.focus",
  1247. "beam_idx": "0",
  1248. "batch_idx": "0",
  1249. "step_idx": "0",
  1250. "feature_value": "0"
  1251. }
  1252. ],
  1253. "source_component": "tagger",
  1254. "source_translator": "identity",
  1255. "source_layer": "logits"
  1256. },
  1257. {
  1258. "name": "rnn-stack",
  1259. "value_trace": [
  1260. {
  1261. "feature_name": "stack.focus",
  1262. "beam_idx": "0",
  1263. "batch_idx": "0",
  1264. "step_idx": "16",
  1265. "feature_value": "0"
  1266. }
  1267. ],
  1268. "source_component": "parser",
  1269. "source_translator": "shift-reduce-step",
  1270. "source_layer": "layer_0"
  1271. }
  1272. ]
  1273. },
  1274. {
  1275. "html_representation": "Stack: | Input: ",
  1276. "linked_feature_trace": [
  1277. {
  1278. "name": "tagger",
  1279. "source_component": "tagger",
  1280. "source_translator": "identity",
  1281. "source_layer": "logits"
  1282. },
  1283. {
  1284. "name": "rnn-stack",
  1285. "source_component": "parser",
  1286. "source_translator": "shift-reduce-step",
  1287. "source_layer": "layer_0"
  1288. }
  1289. ]
  1290. }
  1291. ]
  1292. }
  1293. ]
  1294. }, "09e10a38-13d4-4775-a292-48aea5311d6c", {
  1295. "component": [
  1296. {
  1297. "component_builder": {
  1298. "registered_name": "DynamicComponentBuilder"
  1299. },
  1300. "num_actions": 8,
  1301. "resource": [
  1302. {
  1303. "name": "word-map",
  1304. "part": [
  1305. {
  1306. "file_pattern": "/tmp/tutorial/lexicon/word-map"
  1307. }
  1308. ]
  1309. },
  1310. {
  1311. "name": "tag-map",
  1312. "part": [
  1313. {
  1314. "file_pattern": "/tmp/tutorial/lexicon/tag-map"
  1315. }
  1316. ]
  1317. },
  1318. {
  1319. "name": "tag-to-category",
  1320. "part": [
  1321. {
  1322. "file_pattern": "/tmp/tutorial/lexicon/tag-to-category"
  1323. }
  1324. ]
  1325. },
  1326. {
  1327. "name": "lcword-map",
  1328. "part": [
  1329. {
  1330. "file_pattern": "/tmp/tutorial/lexicon/lcword-map"
  1331. }
  1332. ]
  1333. },
  1334. {
  1335. "name": "category-map",
  1336. "part": [
  1337. {
  1338. "file_pattern": "/tmp/tutorial/lexicon/category-map"
  1339. }
  1340. ]
  1341. },
  1342. {
  1343. "name": "char-map",
  1344. "part": [
  1345. {
  1346. "file_pattern": "/tmp/tutorial/lexicon/char-map"
  1347. }
  1348. ]
  1349. },
  1350. {
  1351. "name": "char-ngram-map",
  1352. "part": [
  1353. {
  1354. "file_pattern": "/tmp/tutorial/lexicon/char-ngram-map"
  1355. }
  1356. ]
  1357. },
  1358. {
  1359. "name": "label-map",
  1360. "part": [
  1361. {
  1362. "file_pattern": "/tmp/tutorial/lexicon/label-map"
  1363. }
  1364. ]
  1365. },
  1366. {
  1367. "name": "prefix-table",
  1368. "part": [
  1369. {
  1370. "file_pattern": "/tmp/tutorial/lexicon/prefix-table"
  1371. }
  1372. ]
  1373. },
  1374. {
  1375. "name": "suffix-table",
  1376. "part": [
  1377. {
  1378. "file_pattern": "/tmp/tutorial/lexicon/suffix-table"
  1379. }
  1380. ]
  1381. }
  1382. ],
  1383. "name": "tagger",
  1384. "network_unit": {
  1385. "registered_name": "FeedForwardNetwork",
  1386. "parameters": {
  1387. "hidden_layer_sizes": "256"
  1388. }
  1389. },
  1390. "fixed_feature": [
  1391. {
  1392. "size": 1,
  1393. "name": "words",
  1394. "vocabulary_size": 12,
  1395. "fml": "input.word",
  1396. "embedding_dim": 64
  1397. }
  1398. ],
  1399. "transition_system": {
  1400. "registered_name": "tagger"
  1401. },
  1402. "backend": {
  1403. "registered_name": "SyntaxNetComponent"
  1404. },
  1405. "linked_feature": [
  1406. {
  1407. "embedding_dim": -1,
  1408. "source_component": "tagger",
  1409. "name": "rnn",
  1410. "source_layer": "layer_0",
  1411. "size": 1,
  1412. "source_translator": "history",
  1413. "fml": "constant"
  1414. }
  1415. ]
  1416. },
  1417. {
  1418. "component_builder": {
  1419. "registered_name": "DynamicComponentBuilder"
  1420. },
  1421. "num_actions": 17,
  1422. "resource": [
  1423. {
  1424. "name": "word-map",
  1425. "part": [
  1426. {
  1427. "file_pattern": "/tmp/tutorial/lexicon/word-map"
  1428. }
  1429. ]
  1430. },
  1431. {
  1432. "name": "tag-map",
  1433. "part": [
  1434. {
  1435. "file_pattern": "/tmp/tutorial/lexicon/tag-map"
  1436. }
  1437. ]
  1438. },
  1439. {
  1440. "name": "tag-to-category",
  1441. "part": [
  1442. {
  1443. "file_pattern": "/tmp/tutorial/lexicon/tag-to-category"
  1444. }
  1445. ]
  1446. },
  1447. {
  1448. "name": "lcword-map",
  1449. "part": [
  1450. {
  1451. "file_pattern": "/tmp/tutorial/lexicon/lcword-map"
  1452. }
  1453. ]
  1454. },
  1455. {
  1456. "name": "category-map",
  1457. "part": [
  1458. {
  1459. "file_pattern": "/tmp/tutorial/lexicon/category-map"
  1460. }
  1461. ]
  1462. },
  1463. {
  1464. "name": "char-map",
  1465. "part": [
  1466. {
  1467. "file_pattern": "/tmp/tutorial/lexicon/char-map"
  1468. }
  1469. ]
  1470. },
  1471. {
  1472. "name": "char-ngram-map",
  1473. "part": [
  1474. {
  1475. "file_pattern": "/tmp/tutorial/lexicon/char-ngram-map"
  1476. }
  1477. ]
  1478. },
  1479. {
  1480. "name": "label-map",
  1481. "part": [
  1482. {
  1483. "file_pattern": "/tmp/tutorial/lexicon/label-map"
  1484. }
  1485. ]
  1486. },
  1487. {
  1488. "name": "prefix-table",
  1489. "part": [
  1490. {
  1491. "file_pattern": "/tmp/tutorial/lexicon/prefix-table"
  1492. }
  1493. ]
  1494. },
  1495. {
  1496. "name": "suffix-table",
  1497. "part": [
  1498. {
  1499. "file_pattern": "/tmp/tutorial/lexicon/suffix-table"
  1500. }
  1501. ]
  1502. }
  1503. ],
  1504. "name": "parser",
  1505. "network_unit": {
  1506. "registered_name": "FeedForwardNetwork",
  1507. "parameters": {
  1508. "hidden_layer_sizes": "256",
  1509. "layer_norm_hidden": "True"
  1510. }
  1511. },
  1512. "transition_system": {
  1513. "registered_name": "arc-standard"
  1514. },
  1515. "backend": {
  1516. "registered_name": "SyntaxNetComponent"
  1517. },
  1518. "linked_feature": [
  1519. {
  1520. "embedding_dim": 32,
  1521. "source_component": "tagger",
  1522. "name": "tagger",
  1523. "source_layer": "logits",
  1524. "size": 3,
  1525. "source_translator": "identity",
  1526. "fml": "input.focus stack.focus stack(1).focus"
  1527. },
  1528. {
  1529. "embedding_dim": 32,
  1530. "source_component": "parser",
  1531. "name": "rnn-stack",
  1532. "source_layer": "layer_0",
  1533. "size": 2,
  1534. "source_translator": "shift-reduce-step",
  1535. "fml": "stack.focus stack(1).focus"
  1536. }
  1537. ]
  1538. }
  1539. ]
  1540. }
  1541. );
  1542. </script>
  1543. </body>
  1544. </html>