123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Multi-threaded word2vec unbatched skip-gram model.
- Trains the model described in:
- (Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
- ICLR 2013.
- http://arxiv.org/abs/1301.3781
- This model does true SGD (i.e. no minibatching). To do this efficiently, custom
- ops are used to sequentially process data within a 'batch'.
- The key ops used are:
- * skipgram custom op that does input processing.
- * neg_train custom op that efficiently calculates and applies the gradient using
- true SGD.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- import threading
- import time
- from six.moves import xrange # pylint: disable=redefined-builtin
- import numpy as np
- import tensorflow as tf
- word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
- flags = tf.app.flags
- flags.DEFINE_string("save_path", None, "Directory to write the model.")
- flags.DEFINE_string(
- "train_data", None,
- "Training data. E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
- flags.DEFINE_string(
- "eval_data", None, "Analogy questions. "
- "See README.md for how to get 'questions-words.txt'.")
- flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.")
- flags.DEFINE_integer(
- "epochs_to_train", 15,
- "Number of epochs to train. Each epoch processes the training data once "
- "completely.")
- flags.DEFINE_float("learning_rate", 0.025, "Initial learning rate.")
- flags.DEFINE_integer("num_neg_samples", 25,
- "Negative samples per training example.")
- flags.DEFINE_integer("batch_size", 500,
- "Numbers of training examples each step processes "
- "(no minibatching).")
- flags.DEFINE_integer("concurrent_steps", 12,
- "The number of concurrent training steps.")
- flags.DEFINE_integer("window_size", 5,
- "The number of words to predict to the left and right "
- "of the target word.")
- flags.DEFINE_integer("min_count", 5,
- "The minimum number of word occurrences for it to be "
- "included in the vocabulary.")
- flags.DEFINE_float("subsample", 1e-3,
- "Subsample threshold for word occurrence. Words that appear "
- "with higher frequency will be randomly down-sampled. Set "
- "to 0 to disable.")
- flags.DEFINE_boolean(
- "interactive", False,
- "If true, enters an IPython interactive session to play with the trained "
- "model. E.g., try model.analogy(b'france', b'paris', b'russia') and "
- "model.nearby([b'proton', b'elephant', b'maxwell'])")
- FLAGS = flags.FLAGS
- class Options(object):
- """Options used by our word2vec model."""
- def __init__(self):
- # Model options.
- # Embedding dimension.
- self.emb_dim = FLAGS.embedding_size
- # Training options.
- # The training text file.
- self.train_data = FLAGS.train_data
- # Number of negative samples per example.
- self.num_samples = FLAGS.num_neg_samples
- # The initial learning rate.
- self.learning_rate = FLAGS.learning_rate
- # Number of epochs to train. After these many epochs, the learning
- # rate decays linearly to zero and the training stops.
- self.epochs_to_train = FLAGS.epochs_to_train
- # Concurrent training steps.
- self.concurrent_steps = FLAGS.concurrent_steps
- # Number of examples for one training step.
- self.batch_size = FLAGS.batch_size
- # The number of words to predict to the left and right of the target word.
- self.window_size = FLAGS.window_size
- # The minimum number of word occurrences for it to be included in the
- # vocabulary.
- self.min_count = FLAGS.min_count
- # Subsampling threshold for word occurrence.
- self.subsample = FLAGS.subsample
- # Where to write out summaries.
- self.save_path = FLAGS.save_path
- if not os.path.exists(self.save_path):
- os.makedirs(self.save_path)
- # Eval options.
- # The text file for eval.
- self.eval_data = FLAGS.eval_data
- class Word2Vec(object):
- """Word2Vec model (Skipgram)."""
- def __init__(self, options, session):
- self._options = options
- self._session = session
- self._word2id = {}
- self._id2word = []
- self.build_graph()
- self.build_eval_graph()
- self.save_vocab()
- def read_analogies(self):
- """Reads through the analogy question file.
- Returns:
- questions: a [n, 4] numpy array containing the analogy question's
- word ids.
- questions_skipped: questions skipped due to unknown words.
- """
- questions = []
- questions_skipped = 0
- with open(self._options.eval_data, "rb") as analogy_f:
- for line in analogy_f:
- if line.startswith(b":"): # Skip comments.
- continue
- words = line.strip().lower().split(b" ")
- ids = [self._word2id.get(w.strip()) for w in words]
- if None in ids or len(ids) != 4:
- questions_skipped += 1
- else:
- questions.append(np.array(ids))
- print("Eval analogy file: ", self._options.eval_data)
- print("Questions: ", len(questions))
- print("Skipped: ", questions_skipped)
- self._analogy_questions = np.array(questions, dtype=np.int32)
- def build_graph(self):
- """Build the model graph."""
- opts = self._options
- # The training data. A text file.
- (words, counts, words_per_epoch, current_epoch, total_words_processed,
- examples, labels) = word2vec.skipgram_word2vec(filename=opts.train_data,
- batch_size=opts.batch_size,
- window_size=opts.window_size,
- min_count=opts.min_count,
- subsample=opts.subsample)
- (opts.vocab_words, opts.vocab_counts,
- opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
- opts.vocab_size = len(opts.vocab_words)
- print("Data file: ", opts.train_data)
- print("Vocab size: ", opts.vocab_size - 1, " + UNK")
- print("Words per epoch: ", opts.words_per_epoch)
- self._id2word = opts.vocab_words
- for i, w in enumerate(self._id2word):
- self._word2id[w] = i
- # Declare all variables we need.
- # Input words embedding: [vocab_size, emb_dim]
- w_in = tf.Variable(
- tf.random_uniform(
- [opts.vocab_size,
- opts.emb_dim], -0.5 / opts.emb_dim, 0.5 / opts.emb_dim),
- name="w_in")
- # Global step: scalar, i.e., shape [].
- w_out = tf.Variable(tf.zeros([opts.vocab_size, opts.emb_dim]), name="w_out")
- # Global step: []
- global_step = tf.Variable(0, name="global_step")
- # Linear learning rate decay.
- words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
- lr = opts.learning_rate * tf.maximum(
- 0.0001,
- 1.0 - tf.cast(total_words_processed, tf.float32) / words_to_train)
- # Training nodes.
- inc = global_step.assign_add(1)
- with tf.control_dependencies([inc]):
- train = word2vec.neg_train_word2vec(w_in,
- w_out,
- examples,
- labels,
- lr,
- vocab_count=opts.vocab_counts.tolist(),
- num_negative_samples=opts.num_samples)
- self._w_in = w_in
- self._examples = examples
- self._labels = labels
- self._lr = lr
- self._train = train
- self.global_step = global_step
- self._epoch = current_epoch
- self._words = total_words_processed
- def save_vocab(self):
- """Save the vocabulary to a file so the model can be reloaded."""
- opts = self._options
- with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
- for i in xrange(opts.vocab_size):
- vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8")
- f.write("%s %d\n" % (vocab_word,
- opts.vocab_counts[i]))
- def build_eval_graph(self):
- """Build the evaluation graph."""
- # Eval graph
- opts = self._options
- # Each analogy task is to predict the 4th word (d) given three
- # words: a, b, c. E.g., a=italy, b=rome, c=france, we should
- # predict d=paris.
- # The eval feeds three vectors of word ids for a, b, c, each of
- # which is of size N, where N is the number of analogies we want to
- # evaluate in one batch.
- analogy_a = tf.placeholder(dtype=tf.int32) # [N]
- analogy_b = tf.placeholder(dtype=tf.int32) # [N]
- analogy_c = tf.placeholder(dtype=tf.int32) # [N]
- # Normalized word embeddings of shape [vocab_size, emb_dim].
- nemb = tf.nn.l2_normalize(self._w_in, 1)
- # Each row of a_emb, b_emb, c_emb is a word's embedding vector.
- # They all have the shape [N, emb_dim]
- a_emb = tf.gather(nemb, analogy_a) # a's embs
- b_emb = tf.gather(nemb, analogy_b) # b's embs
- c_emb = tf.gather(nemb, analogy_c) # c's embs
- # We expect that d's embedding vectors on the unit hyper-sphere is
- # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
- target = c_emb + (b_emb - a_emb)
- # Compute cosine distance between each pair of target and vocab.
- # dist has shape [N, vocab_size].
- dist = tf.matmul(target, nemb, transpose_b=True)
- # For each question (row in dist), find the top 4 words.
- _, pred_idx = tf.nn.top_k(dist, 4)
- # Nodes for computing neighbors for a given word according to
- # their cosine distance.
- nearby_word = tf.placeholder(dtype=tf.int32) # word id
- nearby_emb = tf.gather(nemb, nearby_word)
- nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
- nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
- min(1000, opts.vocab_size))
- # Nodes in the construct graph which are used by training and
- # evaluation to run/feed/fetch.
- self._analogy_a = analogy_a
- self._analogy_b = analogy_b
- self._analogy_c = analogy_c
- self._analogy_pred_idx = pred_idx
- self._nearby_word = nearby_word
- self._nearby_val = nearby_val
- self._nearby_idx = nearby_idx
- # Properly initialize all variables.
- tf.global_variables_initializer().run()
- self.saver = tf.train.Saver()
- def _train_thread_body(self):
- initial_epoch, = self._session.run([self._epoch])
- while True:
- _, epoch = self._session.run([self._train, self._epoch])
- if epoch != initial_epoch:
- break
- def train(self):
- """Train the model."""
- opts = self._options
- initial_epoch, initial_words = self._session.run([self._epoch, self._words])
- workers = []
- for _ in xrange(opts.concurrent_steps):
- t = threading.Thread(target=self._train_thread_body)
- t.start()
- workers.append(t)
- last_words, last_time = initial_words, time.time()
- while True:
- time.sleep(5) # Reports our progress once a while.
- (epoch, step, words, lr) = self._session.run(
- [self._epoch, self.global_step, self._words, self._lr])
- now = time.time()
- last_words, last_time, rate = words, now, (words - last_words) / (
- now - last_time)
- print("Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\r" % (epoch, step,
- lr, rate),
- end="")
- sys.stdout.flush()
- if epoch != initial_epoch:
- break
- for t in workers:
- t.join()
- def _predict(self, analogy):
- """Predict the top 4 answers for analogy questions."""
- idx, = self._session.run([self._analogy_pred_idx], {
- self._analogy_a: analogy[:, 0],
- self._analogy_b: analogy[:, 1],
- self._analogy_c: analogy[:, 2]
- })
- return idx
- def eval(self):
- """Evaluate analogy questions and reports accuracy."""
- # How many questions we get right at precision@1.
- correct = 0
- try:
- total = self._analogy_questions.shape[0]
- except AttributeError as e:
- raise AttributeError("Need to read analogy questions.")
- start = 0
- while start < total:
- limit = start + 2500
- sub = self._analogy_questions[start:limit, :]
- idx = self._predict(sub)
- start = limit
- for question in xrange(sub.shape[0]):
- for j in xrange(4):
- if idx[question, j] == sub[question, 3]:
- # Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
- correct += 1
- break
- elif idx[question, j] in sub[question, :3]:
- # We need to skip words already in the question.
- continue
- else:
- # The correct label is not the precision@1
- break
- print()
- print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
- correct * 100.0 / total))
- def analogy(self, w0, w1, w2):
- """Predict word w3 as in w0:w1 vs w2:w3."""
- wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
- idx = self._predict(wid)
- for c in [self._id2word[i] for i in idx[0, :]]:
- if c not in [w0, w1, w2]:
- print(c)
- break
- print("unknown")
- def nearby(self, words, num=20):
- """Prints out nearby words given a list of words."""
- ids = np.array([self._word2id.get(x, 0) for x in words])
- vals, idx = self._session.run(
- [self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
- for i in xrange(len(words)):
- print("\n%s\n=====================================" % (words[i]))
- for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
- print("%-20s %6.4f" % (self._id2word[neighbor], distance))
- def _start_shell(local_ns=None):
- # An interactive shell is useful for debugging/development.
- import IPython
- user_ns = {}
- if local_ns:
- user_ns.update(local_ns)
- user_ns.update(globals())
- IPython.start_ipython(argv=[], user_ns=user_ns)
- def main(_):
- """Train a word2vec model."""
- if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
- print("--train_data --eval_data and --save_path must be specified.")
- sys.exit(1)
- opts = Options()
- with tf.Graph().as_default(), tf.Session() as session:
- with tf.device("/cpu:0"):
- model = Word2Vec(opts, session)
- model.read_analogies() # Read analogy questions
- for _ in xrange(opts.epochs_to_train):
- model.train() # Process one epoch
- model.eval() # Eval analogies.
- # Perform a final save.
- model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"),
- global_step=model.global_step)
- if FLAGS.interactive:
- # E.g.,
- # [0]: model.analogy(b'france', b'paris', b'russia')
- # [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
- _start_shell(locals())
- if __name__ == "__main__":
- tf.app.run()
|