123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Evaluation for CIFAR-10.
- Accuracy:
- cifar10_train.py achieves 83.0% accuracy after 100K steps (256 epochs
- of data) as judged by cifar10_eval.py.
- Speed:
- On a single Tesla K40, cifar10_train.py processes a single batch of 128 images
- in 0.25-0.35 sec (i.e. 350 - 600 images /sec). The model reaches ~86%
- accuracy after 100K steps in 8 hours of training time.
- Usage:
- Please see the tutorial and website for how to download the CIFAR-10
- data set, compile the program and train the model.
- http://tensorflow.org/tutorials/deep_cnn/
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from datetime import datetime
- import math
- import time
- import numpy as np
- import tensorflow as tf
- import cifar10
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_string('eval_dir', '/tmp/cifar10_eval',
- """Directory where to write event logs.""")
- tf.app.flags.DEFINE_string('eval_data', 'test',
- """Either 'test' or 'train_eval'.""")
- tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/cifar10_train',
- """Directory where to read model checkpoints.""")
- tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
- """How often to run the eval.""")
- tf.app.flags.DEFINE_integer('num_examples', 10000,
- """Number of examples to run.""")
- tf.app.flags.DEFINE_boolean('run_once', False,
- """Whether to run eval only once.""")
- def eval_once(saver, summary_writer, top_k_op, summary_op):
- """Run Eval once.
- Args:
- saver: Saver.
- summary_writer: Summary writer.
- top_k_op: Top K op.
- summary_op: Summary op.
- """
- with tf.Session() as sess:
- ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
- if ckpt and ckpt.model_checkpoint_path:
- # Restores from checkpoint
- saver.restore(sess, ckpt.model_checkpoint_path)
- # Assuming model_checkpoint_path looks something like:
- # /my-favorite-path/cifar10_train/model.ckpt-0,
- # extract global_step from it.
- global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
- else:
- print('No checkpoint file found')
- return
- # Start the queue runners.
- coord = tf.train.Coordinator()
- try:
- threads = []
- for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
- threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
- start=True))
- num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
- true_count = 0 # Counts the number of correct predictions.
- total_sample_count = num_iter * FLAGS.batch_size
- step = 0
- while step < num_iter and not coord.should_stop():
- predictions = sess.run([top_k_op])
- true_count += np.sum(predictions)
- step += 1
- # Compute precision @ 1.
- precision = true_count / total_sample_count
- print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
- summary = tf.Summary()
- summary.ParseFromString(sess.run(summary_op))
- summary.value.add(tag='Precision @ 1', simple_value=precision)
- summary_writer.add_summary(summary, global_step)
- except Exception as e: # pylint: disable=broad-except
- coord.request_stop(e)
- coord.request_stop()
- coord.join(threads, stop_grace_period_secs=10)
- def evaluate():
- """Eval CIFAR-10 for a number of steps."""
- with tf.Graph().as_default() as g:
- # Get images and labels for CIFAR-10.
- eval_data = FLAGS.eval_data == 'test'
- images, labels = cifar10.inputs(eval_data=eval_data)
- # Build a Graph that computes the logits predictions from the
- # inference model.
- logits = cifar10.inference(images)
- # Calculate predictions.
- top_k_op = tf.nn.in_top_k(logits, labels, 1)
- # Restore the moving average version of the learned variables for eval.
- variable_averages = tf.train.ExponentialMovingAverage(
- cifar10.MOVING_AVERAGE_DECAY)
- variables_to_restore = variable_averages.variables_to_restore()
- saver = tf.train.Saver(variables_to_restore)
- # Build the summary operation based on the TF collection of Summaries.
- summary_op = tf.summary.merge_all()
- summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)
- while True:
- eval_once(saver, summary_writer, top_k_op, summary_op)
- if FLAGS.run_once:
- break
- time.sleep(FLAGS.eval_interval_secs)
- def main(argv=None): # pylint: disable=unused-argument
- cifar10.maybe_download_and_extract()
- if tf.gfile.Exists(FLAGS.eval_dir):
- tf.gfile.DeleteRecursively(FLAGS.eval_dir)
- tf.gfile.MakeDirs(FLAGS.eval_dir)
- evaluate()
- if __name__ == '__main__':
- tf.app.run()
|