123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for models.tutorials.rnn.ptb.reader."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os.path
- import tensorflow as tf
- import reader
- class PtbReaderTest(tf.test.TestCase):
- def setUp(self):
- self._string_data = "\n".join(
- [" hello there i am",
- " rain as day",
- " want some cheesy puffs ?"])
- def testPtbRawData(self):
- tmpdir = tf.test.get_temp_dir()
- for suffix in "train", "valid", "test":
- filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
- with tf.gfile.GFile(filename, "w") as fh:
- fh.write(self._string_data)
- # Smoke test
- output = reader.ptb_raw_data(tmpdir)
- self.assertEqual(len(output), 4)
- def testPtbProducer(self):
- raw_data = [4, 3, 2, 1, 0, 5, 6, 1, 1, 1, 1, 0, 3, 4, 1]
- batch_size = 3
- num_steps = 2
- x, y = reader.ptb_producer(raw_data, batch_size, num_steps)
- with self.test_session() as session:
- coord = tf.train.Coordinator()
- tf.train.start_queue_runners(session, coord=coord)
- try:
- xval, yval = session.run([x, y])
- self.assertAllEqual(xval, [[4, 3], [5, 6], [1, 0]])
- self.assertAllEqual(yval, [[3, 2], [6, 1], [0, 3]])
- xval, yval = session.run([x, y])
- self.assertAllEqual(xval, [[2, 1], [1, 1], [3, 4]])
- self.assertAllEqual(yval, [[1, 0], [1, 1], [4, 1]])
- finally:
- coord.request_stop()
- coord.join()
- if __name__ == "__main__":
- tf.test.main()
|