123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Model architecture for predictive model, including CDNA, DNA, and STP."""
- import numpy as np
- import tensorflow as tf
- import tensorflow.contrib.slim as slim
- from tensorflow.contrib.layers.python import layers as tf_layers
- from lstm_ops import basic_conv_lstm_cell
- # Amount to use when lower bounding tensors
- RELU_SHIFT = 1e-12
- # kernel size for DNA and CDNA.
- DNA_KERN_SIZE = 5
- def construct_model(images,
- actions=None,
- states=None,
- iter_num=-1.0,
- k=-1,
- use_state=True,
- num_masks=10,
- stp=False,
- cdna=True,
- dna=False,
- context_frames=2):
- """Build convolutional lstm video predictor using STP, CDNA, or DNA.
- Args:
- images: tensor of ground truth image sequences
- actions: tensor of action sequences
- states: tensor of ground truth state sequences
- iter_num: tensor of the current training iteration (for sched. sampling)
- k: constant used for scheduled sampling. -1 to feed in own prediction.
- use_state: True to include state and action in prediction
- num_masks: the number of different pixel motion predictions (and
- the number of masks for each of those predictions)
- stp: True to use Spatial Transformer Predictor (STP)
- cdna: True to use Convoluational Dynamic Neural Advection (CDNA)
- dna: True to use Dynamic Neural Advection (DNA)
- context_frames: number of ground truth frames to pass in before
- feeding in own predictions
- Returns:
- gen_images: predicted future image frames
- gen_states: predicted future states
- Raises:
- ValueError: if more than one network option specified or more than 1 mask
- specified for DNA model.
- """
- if stp + cdna + dna != 1:
- raise ValueError('More than one, or no network option specified.')
- batch_size, img_height, img_width, color_channels = images[0].get_shape()[0:4]
- lstm_func = basic_conv_lstm_cell
- # Generated robot states and images.
- gen_states, gen_images = [], []
- current_state = states[0]
- if k == -1:
- feedself = True
- else:
- # Scheduled sampling:
- # Calculate number of ground-truth frames to pass in.
- num_ground_truth = tf.to_int32(
- tf.round(tf.to_float(batch_size) * (k / (k + tf.exp(iter_num / k)))))
- feedself = False
- # LSTM state sizes and states.
- lstm_size = np.int32(np.array([32, 32, 64, 64, 128, 64, 32]))
- lstm_state1, lstm_state2, lstm_state3, lstm_state4 = None, None, None, None
- lstm_state5, lstm_state6, lstm_state7 = None, None, None
- for image, action in zip(images[:-1], actions[:-1]):
- # Reuse variables after the first timestep.
- reuse = bool(gen_images)
- done_warm_start = len(gen_images) > context_frames - 1
- with slim.arg_scope(
- [lstm_func, slim.layers.conv2d, slim.layers.fully_connected,
- tf_layers.layer_norm, slim.layers.conv2d_transpose],
- reuse=reuse):
- if feedself and done_warm_start:
- # Feed in generated image.
- prev_image = gen_images[-1]
- elif done_warm_start:
- # Scheduled sampling
- prev_image = scheduled_sample(image, gen_images[-1], batch_size,
- num_ground_truth)
- else:
- # Always feed in ground_truth
- prev_image = image
- # Predicted state is always fed back in
- state_action = tf.concat(axis=1, values=[action, current_state])
- enc0 = slim.layers.conv2d(
- prev_image,
- 32, [5, 5],
- stride=2,
- scope='scale1_conv1',
- normalizer_fn=tf_layers.layer_norm,
- normalizer_params={'scope': 'layer_norm1'})
- hidden1, lstm_state1 = lstm_func(
- enc0, lstm_state1, lstm_size[0], scope='state1')
- hidden1 = tf_layers.layer_norm(hidden1, scope='layer_norm2')
- hidden2, lstm_state2 = lstm_func(
- hidden1, lstm_state2, lstm_size[1], scope='state2')
- hidden2 = tf_layers.layer_norm(hidden2, scope='layer_norm3')
- enc1 = slim.layers.conv2d(
- hidden2, hidden2.get_shape()[3], [3, 3], stride=2, scope='conv2')
- hidden3, lstm_state3 = lstm_func(
- enc1, lstm_state3, lstm_size[2], scope='state3')
- hidden3 = tf_layers.layer_norm(hidden3, scope='layer_norm4')
- hidden4, lstm_state4 = lstm_func(
- hidden3, lstm_state4, lstm_size[3], scope='state4')
- hidden4 = tf_layers.layer_norm(hidden4, scope='layer_norm5')
- enc2 = slim.layers.conv2d(
- hidden4, hidden4.get_shape()[3], [3, 3], stride=2, scope='conv3')
- # Pass in state and action.
- smear = tf.reshape(
- state_action,
- [int(batch_size), 1, 1, int(state_action.get_shape()[1])])
- smear = tf.tile(
- smear, [1, int(enc2.get_shape()[1]), int(enc2.get_shape()[2]), 1])
- if use_state:
- enc2 = tf.concat(axis=3, values=[enc2, smear])
- enc3 = slim.layers.conv2d(
- enc2, hidden4.get_shape()[3], [1, 1], stride=1, scope='conv4')
- hidden5, lstm_state5 = lstm_func(
- enc3, lstm_state5, lstm_size[4], scope='state5') # last 8x8
- hidden5 = tf_layers.layer_norm(hidden5, scope='layer_norm6')
- enc4 = slim.layers.conv2d_transpose(
- hidden5, hidden5.get_shape()[3], 3, stride=2, scope='convt1')
- hidden6, lstm_state6 = lstm_func(
- enc4, lstm_state6, lstm_size[5], scope='state6') # 16x16
- hidden6 = tf_layers.layer_norm(hidden6, scope='layer_norm7')
- # Skip connection.
- hidden6 = tf.concat(axis=3, values=[hidden6, enc1]) # both 16x16
- enc5 = slim.layers.conv2d_transpose(
- hidden6, hidden6.get_shape()[3], 3, stride=2, scope='convt2')
- hidden7, lstm_state7 = lstm_func(
- enc5, lstm_state7, lstm_size[6], scope='state7') # 32x32
- hidden7 = tf_layers.layer_norm(hidden7, scope='layer_norm8')
- # Skip connection.
- hidden7 = tf.concat(axis=3, values=[hidden7, enc0]) # both 32x32
- enc6 = slim.layers.conv2d_transpose(
- hidden7,
- hidden7.get_shape()[3], 3, stride=2, scope='convt3',
- normalizer_fn=tf_layers.layer_norm,
- normalizer_params={'scope': 'layer_norm9'})
- if dna:
- # Using largest hidden state for predicting untied conv kernels.
- enc7 = slim.layers.conv2d_transpose(
- enc6, DNA_KERN_SIZE**2, 1, stride=1, scope='convt4')
- else:
- # Using largest hidden state for predicting a new image layer.
- enc7 = slim.layers.conv2d_transpose(
- enc6, color_channels, 1, stride=1, scope='convt4')
- # This allows the network to also generate one image from scratch,
- # which is useful when regions of the image become unoccluded.
- transformed = [tf.nn.sigmoid(enc7)]
- if stp:
- stp_input0 = tf.reshape(hidden5, [int(batch_size), -1])
- stp_input1 = slim.layers.fully_connected(
- stp_input0, 100, scope='fc_stp')
- transformed += stp_transformation(prev_image, stp_input1, num_masks)
- elif cdna:
- cdna_input = tf.reshape(hidden5, [int(batch_size), -1])
- transformed += cdna_transformation(prev_image, cdna_input, num_masks,
- int(color_channels))
- elif dna:
- # Only one mask is supported (more should be unnecessary).
- if num_masks != 1:
- raise ValueError('Only one mask is supported for DNA model.')
- transformed = [dna_transformation(prev_image, enc7)]
- masks = slim.layers.conv2d_transpose(
- enc6, num_masks + 1, 1, stride=1, scope='convt7')
- masks = tf.reshape(
- tf.nn.softmax(tf.reshape(masks, [-1, num_masks + 1])),
- [int(batch_size), int(img_height), int(img_width), num_masks + 1])
- mask_list = tf.split(axis=3, num_or_size_splits=num_masks + 1, value=masks)
- output = mask_list[0] * prev_image
- for layer, mask in zip(transformed, mask_list[1:]):
- output += layer * mask
- gen_images.append(output)
- current_state = slim.layers.fully_connected(
- state_action,
- int(current_state.get_shape()[1]),
- scope='state_pred',
- activation_fn=None)
- gen_states.append(current_state)
- return gen_images, gen_states
- ## Utility functions
- def stp_transformation(prev_image, stp_input, num_masks):
- """Apply spatial transformer predictor (STP) to previous image.
- Args:
- prev_image: previous image to be transformed.
- stp_input: hidden layer to be used for computing STN parameters.
- num_masks: number of masks and hence the number of STP transformations.
- Returns:
- List of images transformed by the predicted STP parameters.
- """
- # Only import spatial transformer if needed.
- from spatial_transformer import transformer
- identity_params = tf.convert_to_tensor(
- np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], np.float32))
- transformed = []
- for i in range(num_masks - 1):
- params = slim.layers.fully_connected(
- stp_input, 6, scope='stp_params' + str(i),
- activation_fn=None) + identity_params
- transformed.append(transformer(prev_image, params))
- return transformed
- def cdna_transformation(prev_image, cdna_input, num_masks, color_channels):
- """Apply convolutional dynamic neural advection to previous image.
- Args:
- prev_image: previous image to be transformed.
- cdna_input: hidden lyaer to be used for computing CDNA kernels.
- num_masks: the number of masks and hence the number of CDNA transformations.
- color_channels: the number of color channels in the images.
- Returns:
- List of images transformed by the predicted CDNA kernels.
- """
- batch_size = int(cdna_input.get_shape()[0])
- # Predict kernels using linear function of last hidden layer.
- cdna_kerns = slim.layers.fully_connected(
- cdna_input,
- DNA_KERN_SIZE * DNA_KERN_SIZE * num_masks,
- scope='cdna_params',
- activation_fn=None)
- # Reshape and normalize.
- cdna_kerns = tf.reshape(
- cdna_kerns, [batch_size, DNA_KERN_SIZE, DNA_KERN_SIZE, 1, num_masks])
- cdna_kerns = tf.nn.relu(cdna_kerns - RELU_SHIFT) + RELU_SHIFT
- norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True)
- cdna_kerns /= norm_factor
- cdna_kerns = tf.tile(cdna_kerns, [1, 1, 1, color_channels, 1])
- cdna_kerns = tf.split(axis=0, num_or_size_splits=batch_size, value=cdna_kerns)
- prev_images = tf.split(axis=0, num_or_size_splits=batch_size, value=prev_image)
- # Transform image.
- transformed = []
- for kernel, preimg in zip(cdna_kerns, prev_images):
- kernel = tf.squeeze(kernel)
- if len(kernel.get_shape()) == 3:
- kernel = tf.expand_dims(kernel, -1)
- transformed.append(
- tf.nn.depthwise_conv2d(preimg, kernel, [1, 1, 1, 1], 'SAME'))
- transformed = tf.concat(axis=0, values=transformed)
- transformed = tf.split(axis=3, num_or_size_splits=num_masks, value=transformed)
- return transformed
- def dna_transformation(prev_image, dna_input):
- """Apply dynamic neural advection to previous image.
- Args:
- prev_image: previous image to be transformed.
- dna_input: hidden lyaer to be used for computing DNA transformation.
- Returns:
- List of images transformed by the predicted CDNA kernels.
- """
- # Construct translated images.
- prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]])
- image_height = int(prev_image.get_shape()[1])
- image_width = int(prev_image.get_shape()[2])
- inputs = []
- for xkern in range(DNA_KERN_SIZE):
- for ykern in range(DNA_KERN_SIZE):
- inputs.append(
- tf.expand_dims(
- tf.slice(prev_image_pad, [0, xkern, ykern, 0],
- [-1, image_height, image_width, -1]), [3]))
- inputs = tf.concat(axis=3, values=inputs)
- # Normalize channels to 1.
- kernel = tf.nn.relu(dna_input - RELU_SHIFT) + RELU_SHIFT
- kernel = tf.expand_dims(
- kernel / tf.reduce_sum(
- kernel, [3], keep_dims=True), [4])
- return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
- def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
- """Sample batch with specified mix of ground truth and generated data points.
- Args:
- ground_truth_x: tensor of ground-truth data points.
- generated_x: tensor of generated data points.
- batch_size: batch size
- num_ground_truth: number of ground-truth examples to include in batch.
- Returns:
- New batch with num_ground_truth sampled from ground_truth_x and the rest
- from generated_x.
- """
- idx = tf.random_shuffle(tf.range(int(batch_size)))
- ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
- generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))
- ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
- generated_examps = tf.gather(generated_x, generated_idx)
- return tf.dynamic_stitch([ground_truth_idx, generated_idx],
- [ground_truth_examps, generated_examps])
|