123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- #!/usr/bin/python
- #
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- r"""Neural Network Image Compression Decoder.
- Decompress an image from the numpy's npz format generated by the encoder.
- Example usage:
- python decoder.py --input_codes=output_codes.pkl --iteration=15 \
- --output_directory=/tmp/compression_output/ --model=residual_gru.pb
- """
- import os
- import numpy as np
- import tensorflow as tf
- tf.flags.DEFINE_string('input_codes', None, 'Location of binary code file.')
- tf.flags.DEFINE_integer('iteration', -1, 'The max quality level of '
- 'the images to output. Use -1 to infer from loaded '
- ' codes.')
- tf.flags.DEFINE_string('output_directory', None, 'Directory to save decoded '
- 'images.')
- tf.flags.DEFINE_string('model', None, 'Location of compression model.')
- FLAGS = tf.flags.FLAGS
- def get_input_tensor_names():
- name_list = ['GruBinarizer/SignBinarizer/Sign:0']
- for i in xrange(1, 16):
- name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i))
- return name_list
- def get_output_tensor_names():
- return ['loop_{0:02d}/add:0'.format(i) for i in xrange(0, 16)]
- def main(_):
- if (FLAGS.input_codes is None or FLAGS.output_directory is None or
- FLAGS.model is None):
- print ('\nUsage: python decoder.py --input_codes=output_codes.pkl '
- '--iteration=15 --output_directory=/tmp/compression_output/ '
- '--model=residual_gru.pb\n\n')
- return
- if FLAGS.iteration < -1 or FLAGS.iteration > 15:
- print ('\n--iteration must be between 0 and 15 inclusive, or -1 to infer '
- 'from file.\n')
- return
- iteration = FLAGS.iteration
- if not tf.gfile.Exists(FLAGS.output_directory):
- tf.gfile.MkDir(FLAGS.output_directory)
- if not tf.gfile.Exists(FLAGS.input_codes):
- print '\nInput codes not found.\n'
- return
- with tf.gfile.FastGFile(FLAGS.input_codes, 'rb') as code_file:
- loaded_codes = np.load(code_file)
- assert ['codes', 'shape'] not in loaded_codes.files
- loaded_shape = loaded_codes['shape']
- loaded_array = loaded_codes['codes']
- # Unpack and recover code shapes.
- unpacked_codes = np.reshape(np.unpackbits(loaded_array)
- [:np.prod(loaded_shape)],
- loaded_shape)
- numpy_int_codes = np.split(unpacked_codes, len(unpacked_codes))
- if iteration == -1:
- iteration = len(unpacked_codes) - 1
- # Convert back to float and recover scale.
- numpy_codes = [np.squeeze(x.astype(np.float32), 0) * 2 - 1 for x in
- numpy_int_codes]
- with tf.Graph().as_default() as graph:
- # Load the inference model for decoding.
- with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(model_file.read())
- _ = tf.import_graph_def(graph_def, name='')
- # For encoding the tensors into PNGs.
- input_image = tf.placeholder(tf.uint8)
- encoded_image = tf.image.encode_png(input_image)
- input_tensors = [graph.get_tensor_by_name(name) for name in
- get_input_tensor_names()][0:iteration+1]
- outputs = [graph.get_tensor_by_name(name) for name in
- get_output_tensor_names()][0:iteration+1]
- feed_dict = {key: value for (key, value) in zip(input_tensors,
- numpy_codes)}
- with tf.Session(graph=graph) as sess:
- results = sess.run(outputs, feed_dict=feed_dict)
- for index, result in enumerate(results):
- img = np.uint8(np.clip(result + 0.5, 0, 255))
- img = img.squeeze()
- png_img = sess.run(encoded_image, feed_dict={input_image: img})
- with tf.gfile.FastGFile(os.path.join(FLAGS.output_directory,
- 'image_{0:02d}.png'.format(index)),
- 'w') as output_image:
- output_image.write(png_img)
- if __name__ == '__main__':
- tf.app.run()
|