123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- #!/usr/bin/python
- #
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Python implementation of MS-SSIM.
- Usage:
- python msssim.py --original_image=original.png --compared_image=distorted.png
- """
- import numpy as np
- from scipy import signal
- from scipy.ndimage.filters import convolve
- import tensorflow as tf
- tf.flags.DEFINE_string('original_image', None, 'Path to PNG image.')
- tf.flags.DEFINE_string('compared_image', None, 'Path to PNG image.')
- FLAGS = tf.flags.FLAGS
- def _FSpecialGauss(size, sigma):
- """Function to mimic the 'fspecial' gaussian MATLAB function."""
- radius = size // 2
- offset = 0.0
- start, stop = -radius, radius + 1
- if size % 2 == 0:
- offset = 0.5
- stop -= 1
- x, y = np.mgrid[offset + start:stop, offset + start:stop]
- assert len(x) == size
- g = np.exp(-((x**2 + y**2)/(2.0 * sigma**2)))
- return g / g.sum()
- def _SSIMForMultiScale(img1, img2, max_val=255, filter_size=11,
- filter_sigma=1.5, k1=0.01, k2=0.03):
- """Return the Structural Similarity Map between `img1` and `img2`.
- This function attempts to match the functionality of ssim_index_new.m by
- Zhou Wang: http://www.cns.nyu.edu/~lcv/ssim/msssim.zip
- Arguments:
- img1: Numpy array holding the first RGB image batch.
- img2: Numpy array holding the second RGB image batch.
- max_val: the dynamic range of the images (i.e., the difference between the
- maximum the and minimum allowed values).
- filter_size: Size of blur kernel to use (will be reduced for small images).
- filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced
- for small images).
- k1: Constant used to maintain stability in the SSIM calculation (0.01 in
- the original paper).
- k2: Constant used to maintain stability in the SSIM calculation (0.03 in
- the original paper).
- Returns:
- Pair containing the mean SSIM and contrast sensitivity between `img1` and
- `img2`.
- Raises:
- RuntimeError: If input images don't have the same shape or don't have four
- dimensions: [batch_size, height, width, depth].
- """
- if img1.shape != img2.shape:
- raise RuntimeError('Input images must have the same shape (%s vs. %s).',
- img1.shape, img2.shape)
- if img1.ndim != 4:
- raise RuntimeError('Input images must have four dimensions, not %d',
- img1.ndim)
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
- _, height, width, _ = img1.shape
- # Filter size can't be larger than height or width of images.
- size = min(filter_size, height, width)
- # Scale down sigma if a smaller filter size is used.
- sigma = size * filter_sigma / filter_size if filter_size else 0
- if filter_size:
- window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1))
- mu1 = signal.fftconvolve(img1, window, mode='valid')
- mu2 = signal.fftconvolve(img2, window, mode='valid')
- sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid')
- sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid')
- sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid')
- else:
- # Empty blur kernel so no need to convolve.
- mu1, mu2 = img1, img2
- sigma11 = img1 * img1
- sigma22 = img2 * img2
- sigma12 = img1 * img2
- mu11 = mu1 * mu1
- mu22 = mu2 * mu2
- mu12 = mu1 * mu2
- sigma11 -= mu11
- sigma22 -= mu22
- sigma12 -= mu12
- # Calculate intermediate values used by both ssim and cs_map.
- c1 = (k1 * max_val) ** 2
- c2 = (k2 * max_val) ** 2
- v1 = 2.0 * sigma12 + c2
- v2 = sigma11 + sigma22 + c2
- ssim = np.mean((((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2)))
- cs = np.mean(v1 / v2)
- return ssim, cs
- def MultiScaleSSIM(img1, img2, max_val=255, filter_size=11, filter_sigma=1.5,
- k1=0.01, k2=0.03, weights=None):
- """Return the MS-SSIM score between `img1` and `img2`.
- This function implements Multi-Scale Structural Similarity (MS-SSIM) Image
- Quality Assessment according to Zhou Wang's paper, "Multi-scale structural
- similarity for image quality assessment" (2003).
- Link: https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf
- Author's MATLAB implementation:
- http://www.cns.nyu.edu/~lcv/ssim/msssim.zip
- Arguments:
- img1: Numpy array holding the first RGB image batch.
- img2: Numpy array holding the second RGB image batch.
- max_val: the dynamic range of the images (i.e., the difference between the
- maximum the and minimum allowed values).
- filter_size: Size of blur kernel to use (will be reduced for small images).
- filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced
- for small images).
- k1: Constant used to maintain stability in the SSIM calculation (0.01 in
- the original paper).
- k2: Constant used to maintain stability in the SSIM calculation (0.03 in
- the original paper).
- weights: List of weights for each level; if none, use five levels and the
- weights from the original paper.
- Returns:
- MS-SSIM score between `img1` and `img2`.
- Raises:
- RuntimeError: If input images don't have the same shape or don't have four
- dimensions: [batch_size, height, width, depth].
- """
- if img1.shape != img2.shape:
- raise RuntimeError('Input images must have the same shape (%s vs. %s).',
- img1.shape, img2.shape)
- if img1.ndim != 4:
- raise RuntimeError('Input images must have four dimensions, not %d',
- img1.ndim)
- # Note: default weights don't sum to 1.0 but do match the paper / matlab code.
- weights = np.array(weights if weights else
- [0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
- levels = weights.size
- downsample_filter = np.ones((1, 2, 2, 1)) / 4.0
- im1, im2 = [x.astype(np.float64) for x in [img1, img2]]
- mssim = np.array([])
- mcs = np.array([])
- for _ in xrange(levels):
- ssim, cs = _SSIMForMultiScale(
- im1, im2, max_val=max_val, filter_size=filter_size,
- filter_sigma=filter_sigma, k1=k1, k2=k2)
- mssim = np.append(mssim, ssim)
- mcs = np.append(mcs, cs)
- filtered = [convolve(im, downsample_filter, mode='reflect')
- for im in [im1, im2]]
- im1, im2 = [x[:, ::2, ::2, :] for x in filtered]
- return (np.prod(mcs[0:levels-1] ** weights[0:levels-1]) *
- (mssim[levels-1] ** weights[levels-1]))
- def main(_):
- if FLAGS.original_image is None or FLAGS.compared_image is None:
- print ('\nUsage: python msssim.py --original_image=original.png '
- '--compared_image=distorted.png\n\n')
- return
- if not tf.gfile.Exists(FLAGS.original_image):
- print '\nCannot find --original_image.\n'
- return
- if not tf.gfile.Exists(FLAGS.compared_image):
- print '\nCannot find --compared_image.\n'
- return
- with tf.gfile.FastGFile(FLAGS.original_image) as image_file:
- img1_str = image_file.read()
- with tf.gfile.FastGFile(FLAGS.compared_image) as image_file:
- img2_str = image_file.read()
- input_img = tf.placeholder(tf.string)
- decoded_image = tf.expand_dims(tf.image.decode_png(input_img, channels=3), 0)
- with tf.Session() as sess:
- img1 = sess.run(decoded_image, feed_dict={input_img: img1_str})
- img2 = sess.run(decoded_image, feed_dict={input_img: img2_str})
- print MultiScaleSSIM(img1, img2, max_val=255)
- if __name__ == '__main__':
- tf.app.run()
|