| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A library to train Inception using multiple replicas with synchronous update.
- Please see accompanying README.md for details and instructions.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from datetime import datetime
- import os.path
- import time
- import numpy as np
- import tensorflow as tf
- from inception import image_processing
- from inception import inception_model as inception
- from inception.slim import slim
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_string('job_name', '', 'One of "ps", "worker"')
- tf.app.flags.DEFINE_string('ps_hosts', '',
- """Comma-separated list of hostname:port for the """
- """parameter server jobs. e.g. """
- """'machine1:2222,machine2:1111,machine2:2222'""")
- tf.app.flags.DEFINE_string('worker_hosts', '',
- """Comma-separated list of hostname:port for the """
- """worker jobs. e.g. """
- """'machine1:2222,machine2:1111,machine2:2222'""")
- tf.app.flags.DEFINE_string('train_dir', '/tmp/imagenet_train',
- """Directory where to write event logs """
- """and checkpoint.""")
- tf.app.flags.DEFINE_integer('max_steps', 1000000, 'Number of batches to run.')
- tf.app.flags.DEFINE_string('subset', 'train', 'Either "train" or "validation".')
- tf.app.flags.DEFINE_boolean('log_device_placement', False,
- 'Whether to log device placement.')
- # Task ID is used to select the chief and also to access the local_step for
- # each replica to check staleness of the gradients in sync_replicas_optimizer.
- tf.app.flags.DEFINE_integer(
- 'task_id', 0, 'Task ID of the worker/replica running the training.')
- # More details can be found in the sync_replicas_optimizer class:
- # tensorflow/python/training/sync_replicas_optimizer.py
- tf.app.flags.DEFINE_integer('num_replicas_to_aggregate', -1,
- """Number of gradients to collect before """
- """updating the parameters.""")
- tf.app.flags.DEFINE_integer('save_interval_secs', 10 * 60,
- 'Save interval seconds.')
- tf.app.flags.DEFINE_integer('save_summaries_secs', 180,
- 'Save summaries interval seconds.')
- # **IMPORTANT**
- # Please note that this learning rate schedule is heavily dependent on the
- # hardware architecture, batch size and any changes to the model architecture
- # specification. Selecting a finely tuned learning rate schedule is an
- # empirical process that requires some experimentation. Please see README.md
- # more guidance and discussion.
- #
- # Learning rate decay factor selected from https://arxiv.org/abs/1604.00981
- tf.app.flags.DEFINE_float('initial_learning_rate', 0.045,
- 'Initial learning rate.')
- tf.app.flags.DEFINE_float('num_epochs_per_decay', 2.0,
- 'Epochs after which learning rate decays.')
- tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.94,
- 'Learning rate decay factor.')
- # Constants dictating the learning rate schedule.
- RMSPROP_DECAY = 0.9 # Decay term for RMSProp.
- RMSPROP_MOMENTUM = 0.9 # Momentum in RMSProp.
- RMSPROP_EPSILON = 1.0 # Epsilon term for RMSProp.
- def train(target, dataset, cluster_spec):
- """Train Inception on a dataset for a number of steps."""
- # Number of workers and parameter servers are infered from the workers and ps
- # hosts string.
- num_workers = len(cluster_spec.as_dict()['worker'])
- num_parameter_servers = len(cluster_spec.as_dict()['ps'])
- # If no value is given, num_replicas_to_aggregate defaults to be the number of
- # workers.
- if FLAGS.num_replicas_to_aggregate == -1:
- num_replicas_to_aggregate = num_workers
- else:
- num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate
- # Both should be greater than 0 in a distributed training.
- assert num_workers > 0 and num_parameter_servers > 0, (' num_workers and '
- 'num_parameter_servers'
- ' must be > 0.')
- # Choose worker 0 as the chief. Note that any worker could be the chief
- # but there should be only one chief.
- is_chief = (FLAGS.task_id == 0)
- # Ops are assigned to worker by default.
- with tf.device('/job:worker/task:%d' % FLAGS.task_id):
- # Variables and its related init/assign ops are assigned to ps.
- with slim.scopes.arg_scope(
- [slim.variables.variable, slim.variables.global_step],
- device=slim.variables.VariableDeviceChooser(num_parameter_servers)):
- # Create a variable to count the number of train() calls. This equals the
- # number of updates applied to the variables.
- global_step = slim.variables.global_step()
- # Calculate the learning rate schedule.
- num_batches_per_epoch = (dataset.num_examples_per_epoch() /
- FLAGS.batch_size)
- # Decay steps need to be divided by the number of replicas to aggregate.
- decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay /
- num_replicas_to_aggregate)
- # Decay the learning rate exponentially based on the number of steps.
- lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
- global_step,
- decay_steps,
- FLAGS.learning_rate_decay_factor,
- staircase=True)
- # Add a summary to track the learning rate.
- tf.scalar_summary('learning_rate', lr)
- # Create an optimizer that performs gradient descent.
- opt = tf.train.RMSPropOptimizer(lr,
- RMSPROP_DECAY,
- momentum=RMSPROP_MOMENTUM,
- epsilon=RMSPROP_EPSILON)
- images, labels = image_processing.distorted_inputs(
- dataset,
- batch_size=FLAGS.batch_size,
- num_preprocess_threads=FLAGS.num_preprocess_threads)
- # Number of classes in the Dataset label set plus 1.
- # Label 0 is reserved for an (unused) background class.
- num_classes = dataset.num_classes() + 1
- logits = inception.inference(images, num_classes, for_training=True)
- # Add classification loss.
- inception.loss(logits, labels)
- # Gather all of the losses including regularization losses.
- losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
- losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
- total_loss = tf.add_n(losses, name='total_loss')
- if is_chief:
- # Compute the moving average of all individual losses and the
- # total loss.
- loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
- loss_averages_op = loss_averages.apply(losses + [total_loss])
- # Attach a scalar summmary to all individual losses and the total loss;
- # do the same for the averaged version of the losses.
- for l in losses + [total_loss]:
- loss_name = l.op.name
- # Name each loss as '(raw)' and name the moving average version of the
- # loss as the original loss name.
- tf.scalar_summary(loss_name + ' (raw)', l)
- tf.scalar_summary(loss_name, loss_averages.average(l))
- # Add dependency to compute loss_averages.
- with tf.control_dependencies([loss_averages_op]):
- total_loss = tf.identity(total_loss)
- # Track the moving averages of all trainable variables.
- # Note that we maintain a 'double-average' of the BatchNormalization
- # global statistics.
- # This is not needed when the number of replicas are small but important
- # for synchronous distributed training with tens of workers/replicas.
- exp_moving_averager = tf.train.ExponentialMovingAverage(
- inception.MOVING_AVERAGE_DECAY, global_step)
- variables_to_average = (
- tf.trainable_variables() + tf.moving_average_variables())
- # Add histograms for model variables.
- for var in variables_to_average:
- tf.histogram_summary(var.op.name, var)
- # Create synchronous replica optimizer.
- opt = tf.train.SyncReplicasOptimizer(
- opt,
- replicas_to_aggregate=num_replicas_to_aggregate,
- replica_id=FLAGS.task_id,
- total_num_replicas=num_workers,
- variable_averages=exp_moving_averager,
- variables_to_average=variables_to_average)
- batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION)
- assert batchnorm_updates, 'Batchnorm updates are missing'
- batchnorm_updates_op = tf.group(*batchnorm_updates)
- # Add dependency to compute batchnorm_updates.
- with tf.control_dependencies([batchnorm_updates_op]):
- total_loss = tf.identity(total_loss)
- # Compute gradients with respect to the loss.
- grads = opt.compute_gradients(total_loss)
- # Add histograms for gradients.
- for grad, var in grads:
- if grad is not None:
- tf.histogram_summary(var.op.name + '/gradients', grad)
- apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)
- with tf.control_dependencies([apply_gradients_op]):
- train_op = tf.identity(total_loss, name='train_op')
- # Get chief queue_runners, init_tokens and clean_up_op, which is used to
- # synchronize replicas.
- # More details can be found in sync_replicas_optimizer.
- chief_queue_runners = [opt.get_chief_queue_runner()]
- init_tokens_op = opt.get_init_tokens_op()
- clean_up_op = opt.get_clean_up_op()
- # Create a saver.
- saver = tf.train.Saver()
- # Build the summary operation based on the TF collection of Summaries.
- summary_op = tf.merge_all_summaries()
- # Build an initialization operation to run below.
- init_op = tf.initialize_all_variables()
- # We run the summaries in the same thread as the training operations by
- # passing in None for summary_op to avoid a summary_thread being started.
- # Running summaries and training operations in parallel could run out of
- # GPU memory.
- sv = tf.train.Supervisor(is_chief=is_chief,
- logdir=FLAGS.train_dir,
- init_op=init_op,
- summary_op=None,
- global_step=global_step,
- saver=saver,
- save_model_secs=FLAGS.save_interval_secs)
- tf.logging.info('%s Supervisor' % datetime.now())
- sess_config = tf.ConfigProto(
- allow_soft_placement=True,
- log_device_placement=FLAGS.log_device_placement)
- # Get a session.
- sess = sv.prepare_or_wait_for_session(target, config=sess_config)
- # Start the queue runners.
- queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
- sv.start_queue_runners(sess, queue_runners)
- tf.logging.info('Started %d queues for processing input data.',
- len(queue_runners))
- if is_chief:
- sv.start_queue_runners(sess, chief_queue_runners)
- sess.run(init_tokens_op)
- # Train, checking for Nans. Concurrently run the summary operation at a
- # specified interval. Note that the summary_op and train_op never run
- # simultaneously in order to prevent running out of GPU memory.
- next_summary_time = time.time() + FLAGS.save_summaries_secs
- while not sv.should_stop():
- try:
- start_time = time.time()
- loss_value, step = sess.run([train_op, global_step])
- assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
- if step > FLAGS.max_steps:
- break
- duration = time.time() - start_time
- if step % 30 == 0:
- examples_per_sec = FLAGS.batch_size / float(duration)
- format_str = ('Worker %d: %s: step %d, loss = %.2f'
- '(%.1f examples/sec; %.3f sec/batch)')
- tf.logging.info(format_str %
- (FLAGS.task_id, datetime.now(), step, loss_value,
- examples_per_sec, duration))
- # Determine if the summary_op should be run on the chief worker.
- if is_chief and next_summary_time < time.time():
- tf.logging.info('Running Summary operation on the chief.')
- summary_str = sess.run(summary_op)
- sv.summary_computed(sess, summary_str)
- tf.logging.info('Finished running Summary operation.')
- # Determine the next time for running the summary.
- next_summary_time += FLAGS.save_summaries_secs
- except:
- if is_chief:
- tf.logging.info('About to execute sync_clean_up_op!')
- sess.run(clean_up_op)
- raise
- # Stop the supervisor. This also waits for service threads to finish.
- sv.stop()
- # Save after the training ends.
- if is_chief:
- saver.save(sess,
- os.path.join(FLAGS.train_dir, 'model.ckpt'),
- global_step=global_step)
|