package leaves import ( "errors" "fmt" "io" "log" "sort" "sync" "unicode/utf8" "github.com/gogo/protobuf/proto" "github.com/sergi/go-diff/diffmatchpatch" "gopkg.in/src-d/go-git.v4" "gopkg.in/src-d/go-git.v4/plumbing" "gopkg.in/src-d/go-git.v4/plumbing/object" "gopkg.in/src-d/go-git.v4/utils/merkletrie" "gopkg.in/src-d/hercules.v4/internal/burndown" "gopkg.in/src-d/hercules.v4/internal/core" "gopkg.in/src-d/hercules.v4/internal/pb" items "gopkg.in/src-d/hercules.v4/internal/plumbing" "gopkg.in/src-d/hercules.v4/internal/plumbing/identity" "gopkg.in/src-d/hercules.v4/internal/yaml" ) // BurndownAnalysis allows to gather the line burndown statistics for a Git repository. // It is a LeafPipelineItem. // Reference: https://erikbern.com/2016/12/05/the-half-life-of-code.html type BurndownAnalysis struct { // Granularity sets the size of each band - the number of days it spans. // Smaller values provide better resolution but require more work and eat more // memory. 30 days is usually enough. Granularity int // Sampling sets how detailed is the statistic - the size of the interval in // days between consecutive measurements. It may not be greater than Granularity. Try 15 or 30. Sampling int // TrackFiles enables or disables the fine-grained per-file burndown analysis. // It does not change the project level burndown results. TrackFiles bool // The number of developers for which to collect the burndown stats. 0 disables it. PeopleNumber int // Debug activates the debugging mode. Analyse() runs slower in this mode // but it accurately checks all the intermediate states for invariant // violations. Debug bool // Repository points to the analysed Git repository struct from go-git. repository *git.Repository // globalHistory is the daily deltas of daily line counts. // E.g. day 0: day 0 +50 lines // day 10: day 0 -10 lines; day 10 +20 lines // day 12: day 0 -5 lines; day 10 -3 lines; day 12 +10 lines // map [0] [0] = 50 // map[10] [0] = -10 // map[10][10] = 20 // map[12] [0] = -5 // map[12][10] = -3 // map[12][12] = 10 globalHistory sparseHistory // fileHistories is the daily deltas of each file's daily line counts. fileHistories map[string]sparseHistory // peopleHistories is the daily deltas of each person's daily line counts. peopleHistories []sparseHistory // files is the mapping -> *File. files map[string]*burndown.File // mergedFiles is used during merges to record the real file hashes mergedFiles map[string]bool // renames is a quick and dirty solution for the "future branch renames" problem. renames map[string]string // matrix is the mutual deletions and self insertions. matrix []map[int]int64 // day is the most recent day index processed. day int // previousDay is the day from the previous sample period - // different from DaysSinceStart.previousDay. previousDay int // references IdentityDetector.ReversedPeopleDict reversedPeopleDict []string } // BurndownResult carries the result of running BurndownAnalysis - it is returned by // BurndownAnalysis.Finalize(). type BurndownResult struct { // [number of samples][number of bands] // The number of samples depends on Sampling: the less Sampling, the bigger the number. // The number of bands depends on Granularity: the less Granularity, the bigger the number. GlobalHistory DenseHistory // The key is the path inside the Git repository. The value's dimensions are the same as // in GlobalHistory. FileHistories map[string]DenseHistory // [number of people][number of samples][number of bands] PeopleHistories []DenseHistory // [number of people][number of people + 2] // The first element is the total number of lines added by the author. // The second element is the number of removals by unidentified authors (outside reversedPeopleDict). // The rest of the elements are equal the number of line removals by the corresponding // authors in reversedPeopleDict: 2 -> 0, 3 -> 1, etc. PeopleMatrix DenseHistory // The following members are private. // reversedPeopleDict is borrowed from IdentityDetector and becomes available after // Pipeline.Initialize(facts map[string]interface{}). Thus it can be obtained via // facts[FactIdentityDetectorReversedPeopleDict]. reversedPeopleDict []string // sampling and granularity are copied from BurndownAnalysis and stored for service purposes // such as merging several results together. sampling int granularity int } const ( // ConfigBurndownGranularity is the name of the option to set BurndownAnalysis.Granularity. ConfigBurndownGranularity = "Burndown.Granularity" // ConfigBurndownSampling is the name of the option to set BurndownAnalysis.Sampling. ConfigBurndownSampling = "Burndown.Sampling" // ConfigBurndownTrackFiles enables burndown collection for files. ConfigBurndownTrackFiles = "Burndown.TrackFiles" // ConfigBurndownTrackPeople enables burndown collection for authors. ConfigBurndownTrackPeople = "Burndown.TrackPeople" // ConfigBurndownDebug enables some extra debug assertions. ConfigBurndownDebug = "Burndown.Debug" // DefaultBurndownGranularity is the default number of days for BurndownAnalysis.Granularity // and BurndownAnalysis.Sampling. DefaultBurndownGranularity = 30 // authorSelf is the internal author index which is used in BurndownAnalysis.Finalize() to // format the author overwrites matrix. authorSelf = (1 << (32 - burndown.TreeMaxBinPower)) - 2 ) type sparseHistory = map[int]map[int]int64 // DenseHistory is the matrix [number of samples][number of bands] -> number of lines. type DenseHistory = [][]int64 // Name of this PipelineItem. Uniquely identifies the type, used for mapping keys, etc. func (analyser *BurndownAnalysis) Name() string { return "Burndown" } // Provides returns the list of names of entities which are produced by this PipelineItem. // Each produced entity will be inserted into `deps` of dependent Consume()-s according // to this list. Also used by core.Registry to build the global map of providers. func (analyser *BurndownAnalysis) Provides() []string { return []string{} } // Requires returns the list of names of entities which are needed by this PipelineItem. // Each requested entity will be inserted into `deps` of Consume(). In turn, those // entities are Provides() upstream. func (analyser *BurndownAnalysis) Requires() []string { arr := [...]string{ items.DependencyFileDiff, items.DependencyTreeChanges, items.DependencyBlobCache, items.DependencyDay, identity.DependencyAuthor} return arr[:] } // ListConfigurationOptions returns the list of changeable public properties of this PipelineItem. func (analyser *BurndownAnalysis) ListConfigurationOptions() []core.ConfigurationOption { options := [...]core.ConfigurationOption{{ Name: ConfigBurndownGranularity, Description: "How many days there are in a single band.", Flag: "granularity", Type: core.IntConfigurationOption, Default: DefaultBurndownGranularity}, { Name: ConfigBurndownSampling, Description: "How frequently to record the state in days.", Flag: "sampling", Type: core.IntConfigurationOption, Default: DefaultBurndownGranularity}, { Name: ConfigBurndownTrackFiles, Description: "Record detailed statistics per each file.", Flag: "burndown-files", Type: core.BoolConfigurationOption, Default: false}, { Name: ConfigBurndownTrackPeople, Description: "Record detailed statistics per each developer.", Flag: "burndown-people", Type: core.BoolConfigurationOption, Default: false}, { Name: ConfigBurndownDebug, Description: "Validate the trees on each step.", Flag: "burndown-debug", Type: core.BoolConfigurationOption, Default: false}, } return options[:] } // Configure sets the properties previously published by ListConfigurationOptions(). func (analyser *BurndownAnalysis) Configure(facts map[string]interface{}) { if val, exists := facts[ConfigBurndownGranularity].(int); exists { analyser.Granularity = val } if val, exists := facts[ConfigBurndownSampling].(int); exists { analyser.Sampling = val } if val, exists := facts[ConfigBurndownTrackFiles].(bool); exists { analyser.TrackFiles = val } if people, exists := facts[ConfigBurndownTrackPeople].(bool); people { if val, exists := facts[identity.FactIdentityDetectorPeopleCount].(int); exists { analyser.PeopleNumber = val analyser.reversedPeopleDict = facts[identity.FactIdentityDetectorReversedPeopleDict].([]string) } } else if exists { analyser.PeopleNumber = 0 } if val, exists := facts[ConfigBurndownDebug].(bool); exists { analyser.Debug = val } } // Flag for the command line switch which enables this analysis. func (analyser *BurndownAnalysis) Flag() string { return "burndown" } // Initialize resets the temporary caches and prepares this PipelineItem for a series of Consume() // calls. The repository which is going to be analysed is supplied as an argument. func (analyser *BurndownAnalysis) Initialize(repository *git.Repository) { if analyser.Granularity <= 0 { log.Printf("Warning: adjusted the granularity to %d days\n", DefaultBurndownGranularity) analyser.Granularity = DefaultBurndownGranularity } if analyser.Sampling <= 0 { log.Printf("Warning: adjusted the sampling to %d days\n", DefaultBurndownGranularity) analyser.Sampling = DefaultBurndownGranularity } if analyser.Sampling > analyser.Granularity { log.Printf("Warning: granularity may not be less than sampling, adjusted to %d\n", analyser.Granularity) analyser.Sampling = analyser.Granularity } analyser.repository = repository analyser.globalHistory = sparseHistory{} analyser.fileHistories = map[string]sparseHistory{} analyser.peopleHistories = make([]sparseHistory, analyser.PeopleNumber) analyser.files = map[string]*burndown.File{} analyser.mergedFiles = map[string]bool{} analyser.renames = map[string]string{} analyser.matrix = make([]map[int]int64, analyser.PeopleNumber) analyser.day = 0 analyser.previousDay = 0 } // Consume runs this PipelineItem on the next commit's data. // `deps` contain all the results from upstream PipelineItem-s as requested by Requires(). // Additionally, DependencyCommit is always present there and represents the analysed *object.Commit. // This function returns the mapping with analysis results. The keys must be the same as // in Provides(). If there was an error, nil is returned. func (analyser *BurndownAnalysis) Consume(deps map[string]interface{}) (map[string]interface{}, error) { author := deps[identity.DependencyAuthor].(int) day := deps[items.DependencyDay].(int) if !core.IsMergeCommit(deps) { analyser.day = day analyser.onNewDay() } else { // effectively disables the status updates if the commit is a merge // we will analyse the conflicts resolution in Merge() analyser.day = burndown.TreeMergeMark analyser.mergedFiles = map[string]bool{} } cache := deps[items.DependencyBlobCache].(map[plumbing.Hash]*object.Blob) treeDiffs := deps[items.DependencyTreeChanges].(object.Changes) fileDiffs := deps[items.DependencyFileDiff].(map[string]items.FileDiffData) for _, change := range treeDiffs { action, _ := change.Action() var err error switch action { case merkletrie.Insert: err = analyser.handleInsertion(change, author, cache) case merkletrie.Delete: err = analyser.handleDeletion(change, author, cache) case merkletrie.Modify: err = analyser.handleModification(change, author, cache, fileDiffs) } if err != nil { return nil, err } } // in case there is a merge analyser.day equals to TreeMergeMark analyser.day = day return nil, nil } // Fork clones this item. Everything is copied by reference except the files // which are copied by value. func (analyser *BurndownAnalysis) Fork(n int) []core.PipelineItem { result := make([]core.PipelineItem, n) for i := range result { clone := *analyser clone.files = map[string]*burndown.File{} for key, file := range analyser.files { clone.files[key] = file.Clone(false) } result[i] = &clone } return result } // Merge combines several items together. We apply the special file merging logic here. func (analyser *BurndownAnalysis) Merge(branches []core.PipelineItem) { all := make([]*BurndownAnalysis, len(branches) + 1) all[0] = analyser for i, branch := range branches { all[i+1] = branch.(*BurndownAnalysis) } keys := map[string]bool{} for _, burn := range all { for key, val := range burn.mergedFiles { // (*) // there can be contradicting flags, // e.g. item was renamed and a new item written on its place // this may be not exactly accurate keys[key] = keys[key] || val } } for key, val := range keys { if !val { for _, burn := range all { delete(burn.files, key) } continue } files := make([]*burndown.File, 0, len(all)) for _, burn := range all { file := burn.files[key] if file != nil { // file can be nil if it is considered binary in this branch files = append(files, file) } } if len(files) == 0 { // so we could be wrong in (*) and there is no such file eventually // it could be also removed in the merge commit itself continue } if len(files) > 1 { files[0].Merge(analyser.day, files[1:]...) } for _, burn := range all { if burn.files[key] != files[0] { burn.files[key] = files[0].Clone(false) } } } analyser.onNewDay() } // Finalize returns the result of the analysis. Further Consume() calls are not expected. func (analyser *BurndownAnalysis) Finalize() interface{} { globalHistory, lastDay := analyser.groupSparseHistory(analyser.globalHistory, -1) fileHistories := map[string]DenseHistory{} for key, history := range analyser.fileHistories { fileHistories[key], _ = analyser.groupSparseHistory(history, lastDay) } peopleHistories := make([]DenseHistory, analyser.PeopleNumber) for i, history := range analyser.peopleHistories { if len(history) > 0 { // there can be people with only trivial merge commits and without own lines peopleHistories[i], _ = analyser.groupSparseHistory(history, lastDay) } else { peopleHistories[i] = make(DenseHistory, len(globalHistory)) for j, gh := range globalHistory { peopleHistories[i][j] = make([]int64, len(gh)) } } } peopleMatrix := make(DenseHistory, analyser.PeopleNumber) for i, row := range analyser.matrix { mrow := make([]int64, analyser.PeopleNumber+2) peopleMatrix[i] = mrow for key, val := range row { if key == identity.AuthorMissing { key = -1 } else if key == authorSelf { key = -2 } mrow[key+2] = val } } return BurndownResult{ GlobalHistory: globalHistory, FileHistories: fileHistories, PeopleHistories: peopleHistories, PeopleMatrix: peopleMatrix, reversedPeopleDict: analyser.reversedPeopleDict, sampling: analyser.Sampling, granularity: analyser.Granularity, } } // Serialize converts the analysis result as returned by Finalize() to text or bytes. // The text format is YAML and the bytes format is Protocol Buffers. func (analyser *BurndownAnalysis) Serialize(result interface{}, binary bool, writer io.Writer) error { burndownResult := result.(BurndownResult) if binary { return analyser.serializeBinary(&burndownResult, writer) } analyser.serializeText(&burndownResult, writer) return nil } // Deserialize converts the specified protobuf bytes to BurndownResult. func (analyser *BurndownAnalysis) Deserialize(pbmessage []byte) (interface{}, error) { msg := pb.BurndownAnalysisResults{} err := proto.Unmarshal(pbmessage, &msg) if err != nil { return nil, err } result := BurndownResult{} convertCSR := func(mat *pb.BurndownSparseMatrix) DenseHistory { res := make(DenseHistory, mat.NumberOfRows) for i := 0; i < int(mat.NumberOfRows); i++ { res[i] = make([]int64, mat.NumberOfColumns) for j := 0; j < len(mat.Rows[i].Columns); j++ { res[i][j] = int64(mat.Rows[i].Columns[j]) } } return res } result.GlobalHistory = convertCSR(msg.Project) result.FileHistories = map[string]DenseHistory{} for _, mat := range msg.Files { result.FileHistories[mat.Name] = convertCSR(mat) } result.reversedPeopleDict = make([]string, len(msg.People)) result.PeopleHistories = make([]DenseHistory, len(msg.People)) for i, mat := range msg.People { result.PeopleHistories[i] = convertCSR(mat) result.reversedPeopleDict[i] = mat.Name } if msg.PeopleInteraction != nil { result.PeopleMatrix = make(DenseHistory, msg.PeopleInteraction.NumberOfRows) } for i := 0; i < len(result.PeopleMatrix); i++ { result.PeopleMatrix[i] = make([]int64, msg.PeopleInteraction.NumberOfColumns) for j := int(msg.PeopleInteraction.Indptr[i]); j < int(msg.PeopleInteraction.Indptr[i+1]); j++ { result.PeopleMatrix[i][msg.PeopleInteraction.Indices[j]] = msg.PeopleInteraction.Data[j] } } result.sampling = int(msg.Sampling) result.granularity = int(msg.Granularity) return result, nil } // MergeResults combines two BurndownResult-s together. func (analyser *BurndownAnalysis) MergeResults( r1, r2 interface{}, c1, c2 *core.CommonAnalysisResult) interface{} { bar1 := r1.(BurndownResult) bar2 := r2.(BurndownResult) merged := BurndownResult{} if bar1.sampling < bar2.sampling { merged.sampling = bar1.sampling } else { merged.sampling = bar2.sampling } if bar1.granularity < bar2.granularity { merged.granularity = bar1.granularity } else { merged.granularity = bar2.granularity } var people map[string][3]int people, merged.reversedPeopleDict = identity.Detector{}.MergeReversedDicts( bar1.reversedPeopleDict, bar2.reversedPeopleDict) var wg sync.WaitGroup if len(bar1.GlobalHistory) > 0 || len(bar2.GlobalHistory) > 0 { wg.Add(1) go func() { defer wg.Done() merged.GlobalHistory = mergeMatrices( bar1.GlobalHistory, bar2.GlobalHistory, bar1.granularity, bar1.sampling, bar2.granularity, bar2.sampling, c1, c2) }() } if len(bar1.FileHistories) > 0 || len(bar2.FileHistories) > 0 { merged.FileHistories = map[string]DenseHistory{} historyMutex := sync.Mutex{} for key, fh1 := range bar1.FileHistories { if fh2, exists := bar2.FileHistories[key]; exists { wg.Add(1) go func(fh1, fh2 DenseHistory, key string) { defer wg.Done() historyMutex.Lock() defer historyMutex.Unlock() merged.FileHistories[key] = mergeMatrices( fh1, fh2, bar1.granularity, bar1.sampling, bar2.granularity, bar2.sampling, c1, c2) }(fh1, fh2, key) } else { historyMutex.Lock() merged.FileHistories[key] = fh1 historyMutex.Unlock() } } for key, fh2 := range bar2.FileHistories { if _, exists := bar1.FileHistories[key]; !exists { historyMutex.Lock() merged.FileHistories[key] = fh2 historyMutex.Unlock() } } } if len(merged.reversedPeopleDict) > 0 { merged.PeopleHistories = make([]DenseHistory, len(merged.reversedPeopleDict)) for i, key := range merged.reversedPeopleDict { ptrs := people[key] if ptrs[1] < 0 { if len(bar2.PeopleHistories) > 0 { merged.PeopleHistories[i] = bar2.PeopleHistories[ptrs[2]] } } else if ptrs[2] < 0 { if len(bar1.PeopleHistories) > 0 { merged.PeopleHistories[i] = bar1.PeopleHistories[ptrs[1]] } } else { wg.Add(1) go func(i int) { defer wg.Done() var m1, m2 DenseHistory if len(bar1.PeopleHistories) > 0 { m1 = bar1.PeopleHistories[ptrs[1]] } if len(bar2.PeopleHistories) > 0 { m2 = bar2.PeopleHistories[ptrs[2]] } merged.PeopleHistories[i] = mergeMatrices( m1, m2, bar1.granularity, bar1.sampling, bar2.granularity, bar2.sampling, c1, c2, ) }(i) } } wg.Add(1) go func() { defer wg.Done() if len(bar2.PeopleMatrix) == 0 { merged.PeopleMatrix = bar1.PeopleMatrix // extend the matrix in both directions for i := 0; i < len(merged.PeopleMatrix); i++ { for j := len(bar1.reversedPeopleDict); j < len(merged.reversedPeopleDict); j++ { merged.PeopleMatrix[i] = append(merged.PeopleMatrix[i], 0) } } for i := len(bar1.reversedPeopleDict); i < len(merged.reversedPeopleDict); i++ { merged.PeopleMatrix = append( merged.PeopleMatrix, make([]int64, len(merged.reversedPeopleDict)+2)) } } else { merged.PeopleMatrix = make(DenseHistory, len(merged.reversedPeopleDict)) for i := range merged.PeopleMatrix { merged.PeopleMatrix[i] = make([]int64, len(merged.reversedPeopleDict)+2) } for i, key := range bar1.reversedPeopleDict { mi := people[key][0] // index in merged.reversedPeopleDict copy(merged.PeopleMatrix[mi][:2], bar1.PeopleMatrix[i][:2]) for j, val := range bar1.PeopleMatrix[i][2:] { merged.PeopleMatrix[mi][2+people[bar1.reversedPeopleDict[j]][0]] = val } } for i, key := range bar2.reversedPeopleDict { mi := people[key][0] // index in merged.reversedPeopleDict merged.PeopleMatrix[mi][0] += bar2.PeopleMatrix[i][0] merged.PeopleMatrix[mi][1] += bar2.PeopleMatrix[i][1] for j, val := range bar2.PeopleMatrix[i][2:] { merged.PeopleMatrix[mi][2+people[bar2.reversedPeopleDict[j]][0]] += val } } } }() } wg.Wait() return merged } // mergeMatrices takes two [number of samples][number of bands] matrices, // resamples them to days so that they become square, sums and resamples back to the // least of (sampling1, sampling2) and (granularity1, granularity2). func mergeMatrices(m1, m2 DenseHistory, granularity1, sampling1, granularity2, sampling2 int, c1, c2 *core.CommonAnalysisResult) DenseHistory { commonMerged := *c1 commonMerged.Merge(c2) var granularity, sampling int if sampling1 < sampling2 { sampling = sampling1 } else { sampling = sampling2 } if granularity1 < granularity2 { granularity = granularity1 } else { granularity = granularity2 } size := int((commonMerged.EndTime - commonMerged.BeginTime) / (3600 * 24)) daily := make([][]float32, size+granularity) for i := range daily { daily[i] = make([]float32, size+sampling) } if len(m1) > 0 { addBurndownMatrix(m1, granularity1, sampling1, daily, int(c1.BeginTime-commonMerged.BeginTime)/(3600*24)) } if len(m2) > 0 { addBurndownMatrix(m2, granularity2, sampling2, daily, int(c2.BeginTime-commonMerged.BeginTime)/(3600*24)) } // convert daily to [][]int64 result := make(DenseHistory, (size+sampling-1)/sampling) for i := range result { result[i] = make([]int64, (size+granularity-1)/granularity) sampledIndex := i * sampling if i == len(result)-1 { sampledIndex = size - 1 } for j := 0; j < len(result[i]); j++ { accum := float32(0) for k := j * granularity; k < (j+1)*granularity && k < size; k++ { accum += daily[sampledIndex][k] } result[i][j] = int64(accum) } } return result } // Explode `matrix` so that it is daily sampled and has daily bands, shift by `offset` days // and add to the accumulator. `daily` size is square and is guaranteed to fit `matrix` by // the caller. // Rows: *at least* len(matrix) * sampling + offset // Columns: *at least* len(matrix[...]) * granularity + offset // `matrix` can be sparse, so that the last columns which are equal to 0 are truncated. func addBurndownMatrix(matrix DenseHistory, granularity, sampling int, daily [][]float32, offset int) { // Determine the maximum number of bands; the actual one may be larger but we do not care maxCols := 0 for _, row := range matrix { if maxCols < len(row) { maxCols = len(row) } } neededRows := len(matrix)*sampling + offset if len(daily) < neededRows { panic(fmt.Sprintf("merge bug: too few daily rows: required %d, have %d", neededRows, len(daily))) } if len(daily[0]) < maxCols { panic(fmt.Sprintf("merge bug: too few daily cols: required %d, have %d", maxCols, len(daily[0]))) } for x := 0; x < maxCols; x++ { for y := 0; y < len(matrix); y++ { if x*granularity > (y+1)*sampling { // the future is zeros continue } decay := func(startIndex int, startVal float32) { if startVal == 0 { return } k := float32(matrix[y][x]) / startVal // <= 1 scale := float32((y+1)*sampling - startIndex) for i := x * granularity; i < (x+1)*granularity; i++ { initial := daily[startIndex-1+offset][i+offset] for j := startIndex; j < (y+1)*sampling; j++ { daily[j+offset][i+offset] = initial * (1 + (k-1)*float32(j-startIndex+1)/scale) } } } raise := func(finishIndex int, finishVal float32) { var initial float32 if y > 0 { initial = float32(matrix[y-1][x]) } startIndex := y * sampling if startIndex < x*granularity { startIndex = x * granularity } if startIndex == finishIndex { return } avg := (finishVal - initial) / float32(finishIndex-startIndex) for j := y * sampling; j < finishIndex; j++ { for i := startIndex; i <= j; i++ { daily[j+offset][i+offset] = avg } } // copy [x*g..y*s) for j := y * sampling; j < finishIndex; j++ { for i := x * granularity; i < y*sampling; i++ { daily[j+offset][i+offset] = daily[j-1+offset][i+offset] } } } if (x+1)*granularity >= (y+1)*sampling { // x*granularity <= (y+1)*sampling // 1. x*granularity <= y*sampling // y*sampling..(y+1)sampling // // x+1 // / // / // / y+1 -| // / | // / y -| // / // / x // // 2. x*granularity > y*sampling // x*granularity..(y+1)sampling // // x+1 // / // / // / y+1 -| // / | // / x -| // / // / y if x*granularity <= y*sampling { raise((y+1)*sampling, float32(matrix[y][x])) } else if (y+1)*sampling > x*granularity { raise((y+1)*sampling, float32(matrix[y][x])) avg := float32(matrix[y][x]) / float32((y+1)*sampling-x*granularity) for j := x * granularity; j < (y+1)*sampling; j++ { for i := x * granularity; i <= j; i++ { daily[j+offset][i+offset] = avg } } } } else if (x+1)*granularity >= y*sampling { // y*sampling <= (x+1)*granularity < (y+1)sampling // y*sampling..(x+1)*granularity // (x+1)*granularity..(y+1)sampling // x+1 // /\ // / \ // / \ // / y+1 // / // y v1 := float32(matrix[y-1][x]) v2 := float32(matrix[y][x]) var peak float32 delta := float32((x+1)*granularity - y*sampling) var scale float32 var previous float32 if y > 0 && (y-1)*sampling >= x*granularity { // x*g <= (y-1)*s <= y*s <= (x+1)*g <= (y+1)*s // |________|.......^ if y > 1 { previous = float32(matrix[y-2][x]) } scale = float32(sampling) } else { // (y-1)*s < x*g <= y*s <= (x+1)*g <= (y+1)*s // |______|.......^ if y == 0 { scale = float32(sampling) } else { scale = float32(y*sampling - x*granularity) } } peak = v1 + (v1-previous)/scale*delta if v2 > peak { // we need to adjust the peak, it may not be less than the decayed value if y < len(matrix)-1 { // y*s <= (x+1)*g <= (y+1)*s < (y+2)*s // ^.........|_________| k := (v2 - float32(matrix[y+1][x])) / float32(sampling) // > 0 peak = float32(matrix[y][x]) + k*float32((y+1)*sampling-(x+1)*granularity) // peak > v2 > v1 } else { peak = v2 // not enough data to interpolate; this is at least not restricted } } raise((x+1)*granularity, peak) decay((x+1)*granularity, peak) } else { // (x+1)*granularity < y*sampling // y*sampling..(y+1)sampling decay(y*sampling, float32(matrix[y-1][x])) } } } } func (analyser *BurndownAnalysis) serializeText(result *BurndownResult, writer io.Writer) { fmt.Fprintln(writer, " granularity:", result.granularity) fmt.Fprintln(writer, " sampling:", result.sampling) yaml.PrintMatrix(writer, result.GlobalHistory, 2, "project", true) if len(result.FileHistories) > 0 { fmt.Fprintln(writer, " files:") keys := sortedKeys(result.FileHistories) for _, key := range keys { yaml.PrintMatrix(writer, result.FileHistories[key], 4, key, true) } } if len(result.PeopleHistories) > 0 { fmt.Fprintln(writer, " people_sequence:") for key := range result.PeopleHistories { fmt.Fprintln(writer, " - "+yaml.SafeString(result.reversedPeopleDict[key])) } fmt.Fprintln(writer, " people:") for key, val := range result.PeopleHistories { yaml.PrintMatrix(writer, val, 4, result.reversedPeopleDict[key], true) } fmt.Fprintln(writer, " people_interaction: |-") yaml.PrintMatrix(writer, result.PeopleMatrix, 4, "", false) } } func (analyser *BurndownAnalysis) serializeBinary(result *BurndownResult, writer io.Writer) error { message := pb.BurndownAnalysisResults{ Granularity: int32(result.granularity), Sampling: int32(result.sampling), } if len(result.GlobalHistory) > 0 { message.Project = pb.ToBurndownSparseMatrix(result.GlobalHistory, "project") } if len(result.FileHistories) > 0 { message.Files = make([]*pb.BurndownSparseMatrix, len(result.FileHistories)) keys := sortedKeys(result.FileHistories) i := 0 for _, key := range keys { message.Files[i] = pb.ToBurndownSparseMatrix( result.FileHistories[key], key) i++ } } if len(result.PeopleHistories) > 0 { message.People = make( []*pb.BurndownSparseMatrix, len(result.PeopleHistories)) for key, val := range result.PeopleHistories { if len(val) > 0 { message.People[key] = pb.ToBurndownSparseMatrix(val, result.reversedPeopleDict[key]) } } message.PeopleInteraction = pb.DenseToCompressedSparseRowMatrix(result.PeopleMatrix) } serialized, err := proto.Marshal(&message) if err != nil { return err } writer.Write(serialized) return nil } func sortedKeys(m map[string]DenseHistory) []string { keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } sort.Strings(keys) return keys } func checkClose(c io.Closer) { if err := c.Close(); err != nil { panic(err) } } // We do a hack and store the day in the first 14 bits and the author index in the last 18. // Strictly speaking, int can be 64-bit and then the author index occupies 32+18 bits. // This hack is needed to simplify the values storage inside File-s. We can compare // different values together and they are compared as days for the same author. func (analyser *BurndownAnalysis) packPersonWithDay(person int, day int) int { if analyser.PeopleNumber == 0 { return day } result := day & burndown.TreeMergeMark result |= person << burndown.TreeMaxBinPower // This effectively means max (16383 - 1) days (>44 years) and (131072 - 2) devs. // One day less because burndown.TreeMergeMark = ((1 << 14) - 1) is a special day. return result } func (analyser *BurndownAnalysis) unpackPersonWithDay(value int) (int, int) { if analyser.PeopleNumber == 0 { return identity.AuthorMissing, value } return value >> burndown.TreeMaxBinPower, value & burndown.TreeMergeMark } func (analyser *BurndownAnalysis) onNewDay() { if analyser.day > analyser.previousDay { analyser.previousDay = analyser.day } } func (analyser *BurndownAnalysis) updateGlobal(currentTime, previousTime, delta int) { _, currentDay := analyser.unpackPersonWithDay(currentTime) _, previousDay := analyser.unpackPersonWithDay(previousTime) currentHistory := analyser.globalHistory[currentDay] if currentHistory == nil { currentHistory = map[int]int64{} analyser.globalHistory[currentDay] = currentHistory } currentHistory[previousDay] += int64(delta) } // updateFile is bound to the specific `history` in the closure. func (analyser *BurndownAnalysis) updateFile( history sparseHistory, currentTime, previousTime, delta int) { _, currentDay := analyser.unpackPersonWithDay(currentTime) _, previousDay := analyser.unpackPersonWithDay(previousTime) currentHistory := history[currentDay] if currentHistory == nil { currentHistory = map[int]int64{} history[currentDay] = currentHistory } currentHistory[previousDay] += int64(delta) } func (analyser *BurndownAnalysis) updateAuthor(currentTime, previousTime, delta int) { previousAuthor, previousDay := analyser.unpackPersonWithDay(previousTime) if previousAuthor == identity.AuthorMissing { return } _, currentDay := analyser.unpackPersonWithDay(currentTime) history := analyser.peopleHistories[previousAuthor] if history == nil { history = sparseHistory{} analyser.peopleHistories[previousAuthor] = history } currentHistory := history[currentDay] if currentHistory == nil { currentHistory = map[int]int64{} history[currentDay] = currentHistory } currentHistory[previousDay] += int64(delta) } func (analyser *BurndownAnalysis) updateMatrix(currentTime, previousTime, delta int) { newAuthor, _ := analyser.unpackPersonWithDay(currentTime) oldAuthor, _ := analyser.unpackPersonWithDay(previousTime) if oldAuthor == identity.AuthorMissing { return } if newAuthor == oldAuthor && delta > 0 { newAuthor = authorSelf } row := analyser.matrix[oldAuthor] if row == nil { row = map[int]int64{} analyser.matrix[oldAuthor] = row } cell, exists := row[newAuthor] if !exists { row[newAuthor] = 0 cell = 0 } row[newAuthor] = cell + int64(delta) } func (analyser *BurndownAnalysis) newFile( hash plumbing.Hash, name string, author int, day int, size int) (*burndown.File, error) { updaters := make([]burndown.Updater, 1) updaters[0] = analyser.updateGlobal if analyser.TrackFiles { history := analyser.fileHistories[name] if history == nil { // can be not nil if the file was created in a future branch history = sparseHistory{} } analyser.fileHistories[name] = history updaters = append(updaters, func(currentTime, previousTime, delta int) { analyser.updateFile(history, currentTime, previousTime, delta) }) } if analyser.PeopleNumber > 0 { updaters = append(updaters, analyser.updateAuthor) updaters = append(updaters, analyser.updateMatrix) day = analyser.packPersonWithDay(author, day) } return burndown.NewFile(day, size, updaters...), nil } func (analyser *BurndownAnalysis) handleInsertion( change *object.Change, author int, cache map[plumbing.Hash]*object.Blob) error { blob := cache[change.To.TreeEntry.Hash] lines, err := items.CountLines(blob) if err != nil { if err.Error() == "binary" { return nil } return err } name := change.To.Name file, exists := analyser.files[name] if exists { return fmt.Errorf("file %s already exists", name) } var hash plumbing.Hash if analyser.day != burndown.TreeMergeMark { hash = blob.Hash } file, err = analyser.newFile(hash, name, author, analyser.day, lines) analyser.files[name] = file if analyser.day == burndown.TreeMergeMark { analyser.mergedFiles[name] = true } return err } func (analyser *BurndownAnalysis) handleDeletion( change *object.Change, author int, cache map[plumbing.Hash]*object.Blob) error { blob := cache[change.From.TreeEntry.Hash] lines, err := items.CountLines(blob) if err != nil { if err.Error() == "binary" { return nil } return err } name := change.From.Name file := analyser.files[name] file.Update(analyser.packPersonWithDay(author, analyser.day), 0, 0, lines) delete(analyser.files, name) delete(analyser.fileHistories, name) analyser.renames[name] = "" if analyser.day == burndown.TreeMergeMark { analyser.mergedFiles[name] = false } return nil } func (analyser *BurndownAnalysis) handleModification( change *object.Change, author int, cache map[plumbing.Hash]*object.Blob, diffs map[string]items.FileDiffData) error { if analyser.day == burndown.TreeMergeMark { analyser.mergedFiles[change.To.Name] = true } file, exists := analyser.files[change.From.Name] if !exists { // this indeed may happen return analyser.handleInsertion(change, author, cache) } // possible rename if change.To.Name != change.From.Name { err := analyser.handleRename(change.From.Name, change.To.Name) if err != nil { return err } } thisDiffs := diffs[change.To.Name] if file.Len() != thisDiffs.OldLinesOfCode { log.Printf("====TREE====\n%s", file.Dump()) return fmt.Errorf("%s: internal integrity error src %d != %d %s -> %s", change.To.Name, thisDiffs.OldLinesOfCode, file.Len(), change.From.TreeEntry.Hash.String(), change.To.TreeEntry.Hash.String()) } // we do not call RunesToDiffLines so the number of lines equals // to the rune count position := 0 pending := diffmatchpatch.Diff{Text: ""} apply := func(edit diffmatchpatch.Diff) { length := utf8.RuneCountInString(edit.Text) if edit.Type == diffmatchpatch.DiffInsert { file.Update(analyser.packPersonWithDay(author, analyser.day), position, length, 0) position += length } else { file.Update(analyser.packPersonWithDay(author, analyser.day), position, 0, length) } if analyser.Debug { file.Validate() } } for _, edit := range thisDiffs.Diffs { dumpBefore := "" if analyser.Debug { dumpBefore = file.Dump() } length := utf8.RuneCountInString(edit.Text) debugError := func() { log.Printf("%s: internal diff error\n", change.To.Name) log.Printf("Update(%d, %d, %d (0), %d (0))\n", analyser.day, position, length, utf8.RuneCountInString(pending.Text)) if dumpBefore != "" { log.Printf("====TREE BEFORE====\n%s====END====\n", dumpBefore) } log.Printf("====TREE AFTER====\n%s====END====\n", file.Dump()) } switch edit.Type { case diffmatchpatch.DiffEqual: if pending.Text != "" { apply(pending) pending.Text = "" } position += length case diffmatchpatch.DiffInsert: if pending.Text != "" { if pending.Type == diffmatchpatch.DiffInsert { debugError() return errors.New("DiffInsert may not appear after DiffInsert") } file.Update(analyser.packPersonWithDay(author, analyser.day), position, length, utf8.RuneCountInString(pending.Text)) if analyser.Debug { file.Validate() } position += length pending.Text = "" } else { pending = edit } case diffmatchpatch.DiffDelete: if pending.Text != "" { debugError() return errors.New("DiffDelete may not appear after DiffInsert/DiffDelete") } pending = edit default: debugError() return fmt.Errorf("diff operation is not supported: %d", edit.Type) } } if pending.Text != "" { apply(pending) pending.Text = "" } if file.Len() != thisDiffs.NewLinesOfCode { return fmt.Errorf("%s: internal integrity error dst %d != %d", change.To.Name, thisDiffs.NewLinesOfCode, file.Len()) } return nil } func (analyser *BurndownAnalysis) handleRename(from, to string) error { if from == to { return nil } file, exists := analyser.files[from] if !exists { return fmt.Errorf("file %s > %s does not exist (files)", from, to) } analyser.files[to] = file delete(analyser.files, from) if analyser.day == burndown.TreeMergeMark { analyser.mergedFiles[from] = false } if analyser.TrackFiles { history := analyser.fileHistories[from] if history == nil { // a future branch could have already renamed it and we are retarded futureRename, exists := analyser.renames[from] if futureRename == "" && exists { // the file will be deleted in the future, whatever history = sparseHistory{} } else { history = analyser.fileHistories[futureRename] if history == nil { return fmt.Errorf("file %s > %s does not exist (histories)", from, to) } } } analyser.fileHistories[to] = history delete(analyser.fileHistories, from) } analyser.renames[from] = to return nil } func (analyser *BurndownAnalysis) groupSparseHistory( history sparseHistory, lastDay int) (DenseHistory, int) { if len(history) == 0 { panic("empty history") } var days []int for day := range history { days = append(days, day) } sort.Ints(days) if lastDay >= 0 { if days[len(days)-1] < lastDay { days = append(days, lastDay) } else if days[len(days)-1] > lastDay { panic("days corruption") } } else { lastDay = days[len(days)-1] } // [y][x] // y - sampling // x - granularity samples := lastDay / analyser.Sampling + 1 bands := lastDay / analyser.Granularity + 1 result := make(DenseHistory, samples) for i := 0; i < bands; i++ { result[i] = make([]int64, bands) } prevsi := 0 for _, day := range days { si := day / analyser.Sampling if si > prevsi { state := result[prevsi] for i := prevsi + 1; i <= si; i++ { copy(result[i], state) } prevsi = si } sample := result[si] for bday, value := range history[day] { sample[bday / analyser.Granularity] += value } } return result, lastDay } func init() { core.Registry.Register(&BurndownAnalysis{}) }