123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937 |
- package rbtree
- import (
- "math"
- "sync"
- )
- //
- // Public definitions
- //
- // Item is the object stored in each tree node.
- type Item struct {
- Key uint32
- Value uint32
- }
- // Allocator is the allocator for nodes in a RBTree.
- type Allocator struct {
- HibernationThreshold int
- storage []node
- gaps map[uint32]bool
- hibernatedStorage [6][]byte
- hibernatedLen int
- }
- // NewAllocator creates a new allocator for RBTree's nodes.
- func NewAllocator() *Allocator {
- return &Allocator{
- storage: []node{},
- gaps: map[uint32]bool{},
- }
- }
- // Size returns the currently allocated size.
- func (allocator Allocator) Size() int {
- return len(allocator.storage)
- }
- // Used returns the number of nodes contained in the allocator.
- func (allocator Allocator) Used() int {
- return len(allocator.storage) - len(allocator.gaps)
- }
- // Clone copies an existing RBTree allocator.
- func (allocator *Allocator) Clone() *Allocator {
- newAllocator := &Allocator{
- storage: make([]node, len(allocator.storage), cap(allocator.storage)),
- gaps: map[uint32]bool{},
- }
- copy(newAllocator.storage, allocator.storage)
- for key, val := range allocator.gaps {
- newAllocator.gaps[key] = val
- }
- return newAllocator
- }
- // Hibernate compresses the allocated memory.
- func (allocator *Allocator) Hibernate() {
- if allocator.HibernationThreshold == 0 || len(allocator.storage) < allocator.HibernationThreshold {
- return
- }
- allocator.hibernatedLen = len(allocator.storage)
- buffers := [6][]uint32{}
- for i := 0; i < len(buffers); i++ {
- buffers[i] = make([]uint32, len(allocator.storage))
- }
- // we deinterleave to achieve a better compression ratio
- for i, n := range allocator.storage {
- buffers[0][i] = n.item.Key
- buffers[1][i] = n.item.Value
- buffers[2][i] = n.left
- buffers[3][i] = n.parent
- buffers[4][i] = n.right
- if n.color {
- buffers[5][i] = 1
- }
- }
- allocator.storage = nil
- wg := &sync.WaitGroup{}
- wg.Add(len(buffers))
- for i, buffer := range buffers {
- go func(i int, buffer []uint32) {
- allocator.hibernatedStorage[i] = CompressUInt32Slice(buffer)
- buffers[i] = nil
- wg.Done()
- }(i, buffer)
- }
- wg.Wait()
- }
- // Boot performs the opposite of Hibernate() - decompresses and restores the allocated memory.
- func (allocator *Allocator) Boot() {
- if allocator.hibernatedLen == 0 {
- // not hibernated
- return
- }
- buffers := [6][]uint32{}
- wg := &sync.WaitGroup{}
- wg.Add(len(buffers))
- for i := 0; i < len(buffers); i++ {
- go func(i int) {
- buffers[i] = make([]uint32, allocator.hibernatedLen)
- DecompressUInt32Slice(allocator.hibernatedStorage[i], buffers[i])
- allocator.hibernatedStorage[i] = nil
- wg.Done()
- }(i)
- }
- wg.Wait()
- allocator.storage = make([]node, allocator.hibernatedLen, (allocator.hibernatedLen*3)/2)
- for i := range allocator.storage {
- n := &allocator.storage[i]
- n.item.Key = buffers[0][i]
- n.item.Value = buffers[1][i]
- n.left = buffers[2][i]
- n.parent = buffers[3][i]
- n.right = buffers[4][i]
- n.color = buffers[5][i] > 0
- }
- allocator.hibernatedLen = 0
- }
- func (allocator *Allocator) malloc() uint32 {
- if len(allocator.gaps) > 0 {
- var key uint32
- for key = range allocator.gaps {
- break
- }
- delete(allocator.gaps, key)
- return key
- }
- n := len(allocator.storage)
- if n == 0 {
- // zero is reserved
- allocator.storage = append(allocator.storage, node{})
- n = 1
- }
- if n == negativeLimitNode-1 {
- // math.MaxUint32 is reserved
- panic("the size of my RBTree allocator has reached the maximum value for uint32, sorry")
- }
- doAssert(n < negativeLimitNode)
- allocator.storage = append(allocator.storage, node{})
- return uint32(n)
- }
- func (allocator *Allocator) free(n uint32) {
- _, exists := allocator.gaps[n]
- doAssert(!exists)
- allocator.storage[n] = node{}
- allocator.gaps[n] = true
- }
- // RBTree is a red-black tree with an API similar to C++ STL's.
- //
- // The implementation is inspired (read: stolen) from:
- // http://en.literateprograms.org/Red-black_tree_(C)#chunk use:private function prototypes.
- //
- // The code was optimized for the simple integer types of Key and Value.
- // The code was further optimized for using allocators.
- // Credits: Yaz Saito.
- type RBTree struct {
- // Root of the tree
- root uint32
- // The minimum and maximum nodes under the tree.
- minNode, maxNode uint32
- // Number of nodes under root, including the root
- count int32
- // Nodes allocator
- allocator *Allocator
- }
- // NewRBTree creates a new red-black binary tree.
- func NewRBTree(allocator *Allocator) *RBTree {
- return &RBTree{allocator: allocator}
- }
- func (tree RBTree) storage() []node {
- return tree.allocator.storage
- }
- // Allocator returns the bound nodes allocator.
- func (tree RBTree) Allocator() *Allocator {
- return tree.allocator
- }
- // Len returns the number of elements in the tree.
- func (tree RBTree) Len() int {
- return int(tree.count)
- }
- // CloneShallow performs a shallow copy of the tree - the nodes are assumed to already exist in the allocator.
- func (tree RBTree) CloneShallow(allocator *Allocator) *RBTree {
- clone := tree
- clone.allocator = allocator
- return &clone
- }
- // CloneDeep performs a deep copy of the tree - the nodes are created from scratch.
- func (tree RBTree) CloneDeep(allocator *Allocator) *RBTree {
- clone := &RBTree{
- count: tree.count,
- allocator: allocator,
- }
- nodeMap := map[uint32]uint32{0: 0}
- originStorage := tree.storage()
- for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
- newNode := allocator.malloc()
- cloneNode := &allocator.storage[newNode]
- cloneNode.item = *iter.Item()
- cloneNode.color = originStorage[iter.node].color
- nodeMap[iter.node] = newNode
- }
- cloneStorage := allocator.storage
- for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
- cloneNode := &cloneStorage[nodeMap[iter.node]]
- originNode := originStorage[iter.node]
- cloneNode.left = nodeMap[originNode.left]
- cloneNode.right = nodeMap[originNode.right]
- cloneNode.parent = nodeMap[originNode.parent]
- }
- clone.root = nodeMap[tree.root]
- clone.minNode = nodeMap[tree.minNode]
- clone.maxNode = nodeMap[tree.maxNode]
- return clone
- }
- // Erase removes all the nodes from the tree.
- func (tree *RBTree) Erase() {
- nodes := make([]uint32, 0, tree.count)
- for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
- nodes = append(nodes, iter.node)
- }
- for _, node := range nodes {
- tree.allocator.free(node)
- }
- tree.root = 0
- tree.minNode = 0
- tree.maxNode = 0
- tree.count = 0
- }
- // Get is a convenience function for finding an element equal to Key. Returns
- // nil if not found.
- func (tree RBTree) Get(key uint32) *uint32 {
- n, exact := tree.findGE(key)
- if exact {
- return &tree.storage()[n].item.Value
- }
- return nil
- }
- // Min creates an iterator that points to the minimum item in the tree.
- // If the tree is empty, returns Limit()
- func (tree *RBTree) Min() Iterator {
- return Iterator{tree, tree.minNode}
- }
- // Max creates an iterator that points at the maximum item in the tree.
- //
- // If the tree is empty, returns NegativeLimit().
- func (tree *RBTree) Max() Iterator {
- if tree.maxNode == 0 {
- return Iterator{tree, negativeLimitNode}
- }
- return Iterator{tree, tree.maxNode}
- }
- // Limit creates an iterator that points beyond the maximum item in the tree.
- func (tree *RBTree) Limit() Iterator {
- return Iterator{tree, 0}
- }
- // NegativeLimit creates an iterator that points before the minimum item in the tree.
- func (tree *RBTree) NegativeLimit() Iterator {
- return Iterator{tree, negativeLimitNode}
- }
- // FindGE finds the smallest element N such that N >= Key, and returns the
- // iterator pointing to the element. If no such element is found,
- // returns tree.Limit().
- func (tree *RBTree) FindGE(key uint32) Iterator {
- n, _ := tree.findGE(key)
- return Iterator{tree, n}
- }
- // FindLE finds the largest element N such that N <= Key, and returns the
- // iterator pointing to the element. If no such element is found,
- // returns iter.NegativeLimit().
- func (tree *RBTree) FindLE(key uint32) Iterator {
- n, exact := tree.findGE(key)
- if exact {
- return Iterator{tree, n}
- }
- if n != 0 {
- return Iterator{tree, doPrev(n, tree.storage())}
- }
- if tree.maxNode == 0 {
- return Iterator{tree, negativeLimitNode}
- }
- return Iterator{tree, tree.maxNode}
- }
- // Insert an item. If the item is already in the tree, do nothing and
- // return false. Else return true.
- func (tree *RBTree) Insert(item Item) (bool, Iterator) {
- // TODO: delay creating n until it is found to be inserted
- n := tree.doInsert(item)
- if n == 0 {
- return false, Iterator{}
- }
- alloc := tree.storage()
- insN := n
- alloc[n].color = red
- for true {
- // Case 1: N is at the root
- if alloc[n].parent == 0 {
- alloc[n].color = black
- break
- }
- // Case 2: The parent is black, so the tree already
- // satisfies the RB properties
- if alloc[alloc[n].parent].color == black {
- break
- }
- // Case 3: parent and uncle are both red.
- // Then paint both black and make grandparent red.
- grandparent := alloc[alloc[n].parent].parent
- var uncle uint32
- if isLeftChild(alloc[n].parent, alloc) {
- uncle = alloc[grandparent].right
- } else {
- uncle = alloc[grandparent].left
- }
- if uncle != 0 && alloc[uncle].color == red {
- alloc[alloc[n].parent].color = black
- alloc[uncle].color = black
- alloc[grandparent].color = red
- n = grandparent
- continue
- }
- // Case 4: parent is red, uncle is black (1)
- if isRightChild(n, alloc) && isLeftChild(alloc[n].parent, alloc) {
- tree.rotateLeft(alloc[n].parent)
- n = alloc[n].left
- continue
- }
- if isLeftChild(n, alloc) && isRightChild(alloc[n].parent, alloc) {
- tree.rotateRight(alloc[n].parent)
- n = alloc[n].right
- continue
- }
- // Case 5: parent is read, uncle is black (2)
- alloc[alloc[n].parent].color = black
- alloc[grandparent].color = red
- if isLeftChild(n, alloc) {
- tree.rotateRight(grandparent)
- } else {
- tree.rotateLeft(grandparent)
- }
- break
- }
- return true, Iterator{tree, insN}
- }
- // DeleteWithKey deletes an item with the given Key. Returns true iff the item was
- // found.
- func (tree *RBTree) DeleteWithKey(key uint32) bool {
- n, exact := tree.findGE(key)
- if exact {
- tree.doDelete(n)
- return true
- }
- return false
- }
- // DeleteWithIterator deletes the current item.
- //
- // REQUIRES: !iter.Limit() && !iter.NegativeLimit()
- func (tree *RBTree) DeleteWithIterator(iter Iterator) {
- doAssert(!iter.Limit() && !iter.NegativeLimit())
- tree.doDelete(iter.node)
- }
- // Iterator allows scanning tree elements in sort order.
- //
- // Iterator invalidation rule is the same as C++ std::map<>'s. That
- // is, if you delete the element that an iterator points to, the
- // iterator becomes invalid. For other operation types, the iterator
- // remains valid.
- type Iterator struct {
- tree *RBTree
- node uint32
- }
- // Equal checks for the underlying nodes equality.
- func (iter Iterator) Equal(other Iterator) bool {
- return iter.node == other.node
- }
- // Limit checks if the iterator points beyond the max element in the tree.
- func (iter Iterator) Limit() bool {
- return iter.node == 0
- }
- // Min checks if the iterator points to the minimum element in the tree.
- func (iter Iterator) Min() bool {
- return iter.node == iter.tree.minNode
- }
- // Max checks if the iterator points to the maximum element in the tree.
- func (iter Iterator) Max() bool {
- return iter.node == iter.tree.maxNode
- }
- // NegativeLimit checks if the iterator points before the minimum element in the tree.
- func (iter Iterator) NegativeLimit() bool {
- return iter.node == negativeLimitNode
- }
- // Item returns the current element. Allows mutating the node
- // (key to be changed with care!).
- //
- // The result is nil if iter.Limit() || iter.NegativeLimit().
- func (iter Iterator) Item() *Item {
- if iter.Limit() || iter.NegativeLimit() {
- return nil
- }
- return &iter.tree.storage()[iter.node].item
- }
- // Next creates a new iterator that points to the successor of the current element.
- //
- // REQUIRES: !iter.Limit()
- func (iter Iterator) Next() Iterator {
- doAssert(!iter.Limit())
- if iter.NegativeLimit() {
- return Iterator{iter.tree, iter.tree.minNode}
- }
- return Iterator{iter.tree, doNext(iter.node, iter.tree.storage())}
- }
- // Prev creates a new iterator that points to the predecessor of the current
- // node.
- //
- // REQUIRES: !iter.NegativeLimit()
- func (iter Iterator) Prev() Iterator {
- doAssert(!iter.NegativeLimit())
- if !iter.Limit() {
- return Iterator{iter.tree, doPrev(iter.node, iter.tree.storage())}
- }
- if iter.tree.maxNode == 0 {
- return Iterator{iter.tree, negativeLimitNode}
- }
- return Iterator{iter.tree, iter.tree.maxNode}
- }
- func doAssert(b bool) {
- if !b {
- panic("rbtree internal assertion failed")
- }
- }
- const (
- red = false
- black = true
- negativeLimitNode = math.MaxUint32
- )
- type node struct {
- item Item
- parent, left, right uint32
- color bool // black or red
- }
- //
- // Internal node attribute accessors
- //
- func getColor(n uint32, allocator []node) bool {
- if n == 0 {
- return black
- }
- return allocator[n].color
- }
- func isLeftChild(n uint32, allocator []node) bool {
- return n == allocator[allocator[n].parent].left
- }
- func isRightChild(n uint32, allocator []node) bool {
- return n == allocator[allocator[n].parent].right
- }
- func sibling(n uint32, allocator []node) uint32 {
- doAssert(allocator[n].parent != 0)
- if isLeftChild(n, allocator) {
- return allocator[allocator[n].parent].right
- }
- return allocator[allocator[n].parent].left
- }
- // Return the minimum node that's larger than N. Return nil if no such
- // node is found.
- func doNext(n uint32, allocator []node) uint32 {
- if allocator[n].right != 0 {
- m := allocator[n].right
- for allocator[m].left != 0 {
- m = allocator[m].left
- }
- return m
- }
- for n != 0 {
- p := allocator[n].parent
- if p == 0 {
- return 0
- }
- if isLeftChild(n, allocator) {
- return p
- }
- n = p
- }
- return 0
- }
- // Return the maximum node that's smaller than N. Return nil if no
- // such node is found.
- func doPrev(n uint32, allocator []node) uint32 {
- if allocator[n].left != 0 {
- return maxPredecessor(n, allocator)
- }
- for n != 0 {
- p := allocator[n].parent
- if p == 0 {
- break
- }
- if isRightChild(n, allocator) {
- return p
- }
- n = p
- }
- return negativeLimitNode
- }
- // Return the predecessor of "n".
- func maxPredecessor(n uint32, allocator []node) uint32 {
- doAssert(allocator[n].left != 0)
- m := allocator[n].left
- for allocator[m].right != 0 {
- m = allocator[m].right
- }
- return m
- }
- //
- // Tree methods
- //
- //
- // Private methods
- //
- func (tree *RBTree) recomputeMinNode() {
- alloc := tree.storage()
- tree.minNode = tree.root
- if tree.minNode != 0 {
- for alloc[tree.minNode].left != 0 {
- tree.minNode = alloc[tree.minNode].left
- }
- }
- }
- func (tree *RBTree) recomputeMaxNode() {
- alloc := tree.storage()
- tree.maxNode = tree.root
- if tree.maxNode != 0 {
- for alloc[tree.maxNode].right != 0 {
- tree.maxNode = alloc[tree.maxNode].right
- }
- }
- }
- func (tree *RBTree) maybeSetMinNode(n uint32) {
- alloc := tree.storage()
- if tree.minNode == 0 {
- tree.minNode = n
- tree.maxNode = n
- } else if alloc[n].item.Key < alloc[tree.minNode].item.Key {
- tree.minNode = n
- }
- }
- func (tree *RBTree) maybeSetMaxNode(n uint32) {
- alloc := tree.storage()
- if tree.maxNode == 0 {
- tree.minNode = n
- tree.maxNode = n
- } else if alloc[n].item.Key > alloc[tree.maxNode].item.Key {
- tree.maxNode = n
- }
- }
- // Try inserting "item" into the tree. Return nil if the item is
- // already in the tree. Otherwise return a new (leaf) node.
- func (tree *RBTree) doInsert(item Item) uint32 {
- if tree.root == 0 {
- n := tree.allocator.malloc()
- tree.storage()[n].item = item
- tree.root = n
- tree.minNode = n
- tree.maxNode = n
- tree.count++
- return n
- }
- parent := tree.root
- storage := tree.storage()
- for true {
- parentNode := storage[parent]
- comp := int(item.Key) - int(parentNode.item.Key)
- if comp == 0 {
- return 0
- } else if comp < 0 {
- if parentNode.left == 0 {
- n := tree.allocator.malloc()
- storage = tree.storage()
- newNode := &storage[n]
- newNode.item = item
- newNode.parent = parent
- storage[parent].left = n
- tree.count++
- tree.maybeSetMinNode(n)
- return n
- }
- parent = parentNode.left
- } else {
- if parentNode.right == 0 {
- n := tree.allocator.malloc()
- storage = tree.storage()
- newNode := &storage[n]
- newNode.item = item
- newNode.parent = parent
- storage[parent].right = n
- tree.count++
- tree.maybeSetMaxNode(n)
- return n
- }
- parent = parentNode.right
- }
- }
- panic("should not reach here")
- }
- // Find a node whose item >= Key. The 2nd return Value is true iff the
- // node.item==Key. Returns (nil, false) if all nodes in the tree are <
- // Key.
- func (tree RBTree) findGE(key uint32) (uint32, bool) {
- alloc := tree.storage()
- n := tree.root
- for true {
- if n == 0 {
- return 0, false
- }
- comp := int(key) - int(alloc[n].item.Key)
- if comp == 0 {
- return n, true
- } else if comp < 0 {
- if alloc[n].left != 0 {
- n = alloc[n].left
- } else {
- return n, false
- }
- } else {
- if alloc[n].right != 0 {
- n = alloc[n].right
- } else {
- succ := doNext(n, alloc)
- if succ == 0 {
- return 0, false
- }
- return succ, key == alloc[succ].item.Key
- }
- }
- }
- panic("should not reach here")
- }
- // Delete N from the tree.
- func (tree *RBTree) doDelete(n uint32) {
- alloc := tree.storage()
- if alloc[n].left != 0 && alloc[n].right != 0 {
- pred := maxPredecessor(n, alloc)
- tree.swapNodes(n, pred)
- }
- doAssert(alloc[n].left == 0 || alloc[n].right == 0)
- child := alloc[n].right
- if child == 0 {
- child = alloc[n].left
- }
- if alloc[n].color == black {
- alloc[n].color = getColor(child, alloc)
- tree.deleteCase1(n)
- }
- tree.replaceNode(n, child)
- if alloc[n].parent == 0 && child != 0 {
- alloc[child].color = black
- }
- tree.allocator.free(n)
- tree.count--
- if tree.count == 0 {
- tree.minNode = 0
- tree.maxNode = 0
- } else {
- if tree.minNode == n {
- tree.recomputeMinNode()
- }
- if tree.maxNode == n {
- tree.recomputeMaxNode()
- }
- }
- }
- // Move n to the pred's place, and vice versa
- //
- func (tree *RBTree) swapNodes(n, pred uint32) {
- doAssert(pred != n)
- alloc := tree.storage()
- isLeft := isLeftChild(pred, alloc)
- tmp := alloc[pred]
- tree.replaceNode(n, pred)
- alloc[pred].color = alloc[n].color
- if tmp.parent == n {
- // swap the positions of n and pred
- if isLeft {
- alloc[pred].left = n
- alloc[pred].right = alloc[n].right
- if alloc[pred].right != 0 {
- alloc[alloc[pred].right].parent = pred
- }
- } else {
- alloc[pred].left = alloc[n].left
- if alloc[pred].left != 0 {
- alloc[alloc[pred].left].parent = pred
- }
- alloc[pred].right = n
- }
- alloc[n].item = tmp.item
- alloc[n].parent = pred
- alloc[n].left = tmp.left
- if alloc[n].left != 0 {
- alloc[alloc[n].left].parent = n
- }
- alloc[n].right = tmp.right
- if alloc[n].right != 0 {
- alloc[alloc[n].right].parent = n
- }
- } else {
- alloc[pred].left = alloc[n].left
- if alloc[pred].left != 0 {
- alloc[alloc[pred].left].parent = pred
- }
- alloc[pred].right = alloc[n].right
- if alloc[pred].right != 0 {
- alloc[alloc[pred].right].parent = pred
- }
- if isLeft {
- alloc[tmp.parent].left = n
- } else {
- alloc[tmp.parent].right = n
- }
- alloc[n].item = tmp.item
- alloc[n].parent = tmp.parent
- alloc[n].left = tmp.left
- if alloc[n].left != 0 {
- alloc[alloc[n].left].parent = n
- }
- alloc[n].right = tmp.right
- if alloc[n].right != 0 {
- alloc[alloc[n].right].parent = n
- }
- }
- alloc[n].color = tmp.color
- }
- func (tree *RBTree) deleteCase1(n uint32) {
- alloc := tree.storage()
- for true {
- if alloc[n].parent != 0 {
- if getColor(sibling(n, alloc), alloc) == red {
- alloc[alloc[n].parent].color = red
- alloc[sibling(n, alloc)].color = black
- if n == alloc[alloc[n].parent].left {
- tree.rotateLeft(alloc[n].parent)
- } else {
- tree.rotateRight(alloc[n].parent)
- }
- }
- if getColor(alloc[n].parent, alloc) == black &&
- getColor(sibling(n, alloc), alloc) == black &&
- getColor(alloc[sibling(n, alloc)].left, alloc) == black &&
- getColor(alloc[sibling(n, alloc)].right, alloc) == black {
- alloc[sibling(n, alloc)].color = red
- n = alloc[n].parent
- continue
- } else {
- // case 4
- if getColor(alloc[n].parent, alloc) == red &&
- getColor(sibling(n, alloc), alloc) == black &&
- getColor(alloc[sibling(n, alloc)].left, alloc) == black &&
- getColor(alloc[sibling(n, alloc)].right, alloc) == black {
- alloc[sibling(n, alloc)].color = red
- alloc[alloc[n].parent].color = black
- } else {
- tree.deleteCase5(n)
- }
- }
- }
- break
- }
- }
- func (tree *RBTree) deleteCase5(n uint32) {
- alloc := tree.storage()
- if n == alloc[alloc[n].parent].left &&
- getColor(sibling(n, alloc), alloc) == black &&
- getColor(alloc[sibling(n, alloc)].left, alloc) == red &&
- getColor(alloc[sibling(n, alloc)].right, alloc) == black {
- alloc[sibling(n, alloc)].color = red
- alloc[alloc[sibling(n, alloc)].left].color = black
- tree.rotateRight(sibling(n, alloc))
- } else if n == alloc[alloc[n].parent].right &&
- getColor(sibling(n, alloc), alloc) == black &&
- getColor(alloc[sibling(n, alloc)].right, alloc) == red &&
- getColor(alloc[sibling(n, alloc)].left, alloc) == black {
- alloc[sibling(n, alloc)].color = red
- alloc[alloc[sibling(n, alloc)].right].color = black
- tree.rotateLeft(sibling(n, alloc))
- }
- // case 6
- alloc[sibling(n, alloc)].color = getColor(alloc[n].parent, alloc)
- alloc[alloc[n].parent].color = black
- if n == alloc[alloc[n].parent].left {
- doAssert(getColor(alloc[sibling(n, alloc)].right, alloc) == red)
- alloc[alloc[sibling(n, alloc)].right].color = black
- tree.rotateLeft(alloc[n].parent)
- } else {
- doAssert(getColor(alloc[sibling(n, alloc)].left, alloc) == red)
- alloc[alloc[sibling(n, alloc)].left].color = black
- tree.rotateRight(alloc[n].parent)
- }
- }
- func (tree *RBTree) replaceNode(oldn, newn uint32) {
- alloc := tree.storage()
- if alloc[oldn].parent == 0 {
- tree.root = newn
- } else {
- if oldn == alloc[alloc[oldn].parent].left {
- alloc[alloc[oldn].parent].left = newn
- } else {
- alloc[alloc[oldn].parent].right = newn
- }
- }
- if newn != 0 {
- alloc[newn].parent = alloc[oldn].parent
- }
- }
- /*
- X Y
- A Y => X C
- B C A B
- */
- func (tree *RBTree) rotateLeft(x uint32) {
- alloc := tree.storage()
- y := alloc[x].right
- alloc[x].right = alloc[y].left
- if alloc[y].left != 0 {
- alloc[alloc[y].left].parent = x
- }
- alloc[y].parent = alloc[x].parent
- if alloc[x].parent == 0 {
- tree.root = y
- } else {
- if isLeftChild(x, alloc) {
- alloc[alloc[x].parent].left = y
- } else {
- alloc[alloc[x].parent].right = y
- }
- }
- alloc[y].left = x
- alloc[x].parent = y
- }
- /*
- Y X
- X C => A Y
- A B B C
- */
- func (tree *RBTree) rotateRight(y uint32) {
- alloc := tree.storage()
- x := alloc[y].left
- // Move "B"
- alloc[y].left = alloc[x].right
- if alloc[x].right != 0 {
- alloc[alloc[x].right].parent = y
- }
- alloc[x].parent = alloc[y].parent
- if alloc[y].parent == 0 {
- tree.root = x
- } else {
- if isLeftChild(y, alloc) {
- alloc[alloc[y].parent].left = x
- } else {
- alloc[alloc[y].parent].right = x
- }
- }
- alloc[x].right = y
- alloc[y].parent = x
- }
|