| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067 | 
							- package rbtree
 
- import (
 
- 	"fmt"
 
- 	"math"
 
- 	"os"
 
- 	"sync"
 
- 	"github.com/gogo/protobuf/sortkeys"
 
- 	"gopkg.in/src-d/go-git.v4/utils/binary"
 
- )
 
- //
 
- // Public definitions
 
- //
 
- // Item is the object stored in each tree node.
 
- type Item struct {
 
- 	Key   uint32
 
- 	Value uint32
 
- }
 
- // Allocator is the allocator for nodes in a RBTree.
 
- type Allocator struct {
 
- 	HibernationThreshold int
 
- 	storage              []node
 
- 	gaps                 map[uint32]bool
 
- 	hibernatedData       [7][]byte
 
- 	hibernatedStorageLen int
 
- 	hibernatedGapsLen    int
 
- }
 
- // NewAllocator creates a new allocator for RBTree's nodes.
 
- func NewAllocator() *Allocator {
 
- 	return &Allocator{
 
- 		storage: []node{},
 
- 		gaps:    map[uint32]bool{},
 
- 	}
 
- }
 
- // Size returns the currently allocated size.
 
- func (allocator Allocator) Size() int {
 
- 	return len(allocator.storage)
 
- }
 
- // Used returns the number of nodes contained in the allocator.
 
- func (allocator Allocator) Used() int {
 
- 	if allocator.storage == nil {
 
- 		panic("hibernated allocators cannot be used")
 
- 	}
 
- 	return len(allocator.storage) - len(allocator.gaps)
 
- }
 
- // Clone copies an existing RBTree allocator.
 
- func (allocator Allocator) Clone() *Allocator {
 
- 	if allocator.storage == nil {
 
- 		panic("cannot clone a hibernated allocator")
 
- 	}
 
- 	newAllocator := &Allocator{
 
- 		HibernationThreshold: allocator.HibernationThreshold,
 
- 		storage:              make([]node, len(allocator.storage), cap(allocator.storage)),
 
- 		gaps:                 map[uint32]bool{},
 
- 	}
 
- 	copy(newAllocator.storage, allocator.storage)
 
- 	for key, val := range allocator.gaps {
 
- 		newAllocator.gaps[key] = val
 
- 	}
 
- 	return newAllocator
 
- }
 
- // Hibernate compresses the allocated memory.
 
- func (allocator *Allocator) Hibernate() {
 
- 	if allocator.hibernatedStorageLen > 0 {
 
- 		panic("cannot hibernate an already hibernated Allocator")
 
- 	}
 
- 	if len(allocator.storage) < allocator.HibernationThreshold {
 
- 		return
 
- 	}
 
- 	allocator.hibernatedStorageLen = len(allocator.storage)
 
- 	if allocator.hibernatedStorageLen == 0 {
 
- 		return
 
- 	}
 
- 	buffers := [6][]uint32{}
 
- 	for i := 0; i < len(buffers); i++ {
 
- 		buffers[i] = make([]uint32, len(allocator.storage))
 
- 	}
 
- 	// we deinterleave to achieve a better compression ratio
 
- 	for i, n := range allocator.storage {
 
- 		buffers[0][i] = n.item.Key
 
- 		buffers[1][i] = n.item.Value
 
- 		buffers[2][i] = n.left
 
- 		buffers[3][i] = n.parent
 
- 		buffers[4][i] = n.right
 
- 		if n.color {
 
- 			buffers[5][i] = 1
 
- 		}
 
- 	}
 
- 	allocator.storage = nil
 
- 	wg := &sync.WaitGroup{}
 
- 	wg.Add(len(buffers) + 1)
 
- 	for i, buffer := range buffers {
 
- 		go func(i int, buffer []uint32) {
 
- 			allocator.hibernatedData[i] = CompressUInt32Slice(buffer)
 
- 			buffers[i] = nil
 
- 			wg.Done()
 
- 		}(i, buffer)
 
- 	}
 
- 	// compress gaps
 
- 	go func() {
 
- 		if len(allocator.gaps) > 0 {
 
- 			allocator.hibernatedGapsLen = len(allocator.gaps)
 
- 			gapsBuffer := make([]uint32, len(allocator.gaps))
 
- 			i := 0
 
- 			for key := range allocator.gaps {
 
- 				gapsBuffer[i] = key
 
- 				i++
 
- 			}
 
- 			sortkeys.Uint32s(gapsBuffer)
 
- 			allocator.hibernatedData[len(buffers)] = CompressUInt32Slice(gapsBuffer)
 
- 		}
 
- 		allocator.gaps = nil
 
- 		wg.Done()
 
- 	}()
 
- 	wg.Wait()
 
- }
 
- // Boot performs the opposite of Hibernate() - decompresses and restores the allocated memory.
 
- func (allocator *Allocator) Boot() {
 
- 	if allocator.hibernatedStorageLen == 0 {
 
- 		// not hibernated
 
- 		return
 
- 	}
 
- 	if allocator.hibernatedData[0] == nil {
 
- 		panic("cannot boot a serialized Allocator")
 
- 	}
 
- 	allocator.gaps = map[uint32]bool{}
 
- 	buffers := [6][]uint32{}
 
- 	wg := &sync.WaitGroup{}
 
- 	wg.Add(len(buffers) + 1)
 
- 	for i := 0; i < len(buffers); i++ {
 
- 		go func(i int) {
 
- 			buffers[i] = make([]uint32, allocator.hibernatedStorageLen)
 
- 			DecompressUInt32Slice(allocator.hibernatedData[i], buffers[i])
 
- 			allocator.hibernatedData[i] = nil
 
- 			wg.Done()
 
- 		}(i)
 
- 	}
 
- 	go func() {
 
- 		if allocator.hibernatedGapsLen > 0 {
 
- 			gapData := allocator.hibernatedData[len(buffers)]
 
- 			buffer := make([]uint32, allocator.hibernatedGapsLen)
 
- 			DecompressUInt32Slice(gapData, buffer)
 
- 			for _, key := range buffer {
 
- 				allocator.gaps[key] = true
 
- 			}
 
- 			allocator.hibernatedData[len(buffers)] = nil
 
- 			allocator.hibernatedGapsLen = 0
 
- 		}
 
- 		wg.Done()
 
- 	}()
 
- 	wg.Wait()
 
- 	allocator.storage = make([]node, allocator.hibernatedStorageLen, (allocator.hibernatedStorageLen*3)/2)
 
- 	for i := range allocator.storage {
 
- 		n := &allocator.storage[i]
 
- 		n.item.Key = buffers[0][i]
 
- 		n.item.Value = buffers[1][i]
 
- 		n.left = buffers[2][i]
 
- 		n.parent = buffers[3][i]
 
- 		n.right = buffers[4][i]
 
- 		n.color = buffers[5][i] > 0
 
- 	}
 
- 	allocator.hibernatedStorageLen = 0
 
- }
 
- // Serialize writes the hibernated allocator on disk.
 
- func (allocator *Allocator) Serialize(path string) error {
 
- 	if allocator.storage != nil {
 
- 		panic("serialization requires the hibernated state")
 
- 	}
 
- 	file, err := os.Create(path)
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	defer file.Close()
 
- 	err = binary.WriteVariableWidthInt(file, int64(allocator.hibernatedStorageLen))
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	err = binary.WriteVariableWidthInt(file, int64(allocator.hibernatedGapsLen))
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	for i, hse := range allocator.hibernatedData {
 
- 		err = binary.WriteVariableWidthInt(file, int64(len(hse)))
 
- 		if err != nil {
 
- 			return err
 
- 		}
 
- 		_, err = file.Write(hse)
 
- 		if err != nil {
 
- 			return err
 
- 		}
 
- 		allocator.hibernatedData[i] = nil
 
- 	}
 
- 	return nil
 
- }
 
- // Deserialize reads a hibernated allocator from disk.
 
- func (allocator *Allocator) Deserialize(path string) error {
 
- 	if allocator.storage != nil {
 
- 		panic("deserialization requires the hibernated state")
 
- 	}
 
- 	file, err := os.Open(path)
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	defer file.Close()
 
- 	x, err := binary.ReadVariableWidthInt(file)
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	allocator.hibernatedStorageLen = int(x)
 
- 	x, err = binary.ReadVariableWidthInt(file)
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	allocator.hibernatedGapsLen = int(x)
 
- 	for i := range allocator.hibernatedData {
 
- 		x, err = binary.ReadVariableWidthInt(file)
 
- 		if err != nil {
 
- 			return err
 
- 		}
 
- 		allocator.hibernatedData[i] = make([]byte, int(x))
 
- 		n, err := file.Read(allocator.hibernatedData[i])
 
- 		if err != nil {
 
- 			return err
 
- 		}
 
- 		if n != int(x) {
 
- 			return fmt.Errorf("incomplete read %d: %d instead of %d", i, n, x)
 
- 		}
 
- 	}
 
- 	return nil
 
- }
 
- func (allocator *Allocator) malloc() uint32 {
 
- 	if allocator.storage == nil {
 
- 		panic("hibernated allocators cannot be used")
 
- 	}
 
- 	if len(allocator.gaps) > 0 {
 
- 		var key uint32
 
- 		for key = range allocator.gaps {
 
- 			break
 
- 		}
 
- 		delete(allocator.gaps, key)
 
- 		return key
 
- 	}
 
- 	n := len(allocator.storage)
 
- 	if n == 0 {
 
- 		// zero is reserved
 
- 		allocator.storage = append(allocator.storage, node{})
 
- 		n = 1
 
- 	}
 
- 	if n == negativeLimitNode-1 {
 
- 		// math.MaxUint32 is reserved
 
- 		panic("the size of my RBTree allocator has reached the maximum value for uint32, sorry")
 
- 	}
 
- 	doAssert(n < negativeLimitNode)
 
- 	allocator.storage = append(allocator.storage, node{})
 
- 	return uint32(n)
 
- }
 
- func (allocator *Allocator) free(n uint32) {
 
- 	if allocator.storage == nil {
 
- 		panic("hibernated allocators cannot be used")
 
- 	}
 
- 	if n == 0 {
 
- 		panic("node #0 is special and cannot be deallocated")
 
- 	}
 
- 	_, exists := allocator.gaps[n]
 
- 	doAssert(!exists)
 
- 	allocator.storage[n] = node{}
 
- 	allocator.gaps[n] = true
 
- }
 
- // RBTree is a red-black tree with an API similar to C++ STL's.
 
- //
 
- // The implementation is inspired (read: stolen) from:
 
- // http://en.literateprograms.org/Red-black_tree_(C)#chunk use:private function prototypes.
 
- //
 
- // The code was optimized for the simple integer types of Key and Value.
 
- // The code was further optimized for using allocators.
 
- // Credits: Yaz Saito.
 
- type RBTree struct {
 
- 	// Root of the tree
 
- 	root uint32
 
- 	// The minimum and maximum nodes under the tree.
 
- 	minNode, maxNode uint32
 
- 	// Number of nodes under root, including the root
 
- 	count int32
 
- 	// Nodes allocator
 
- 	allocator *Allocator
 
- }
 
- // NewRBTree creates a new red-black binary tree.
 
- func NewRBTree(allocator *Allocator) *RBTree {
 
- 	return &RBTree{allocator: allocator}
 
- }
 
- func (tree RBTree) storage() []node {
 
- 	return tree.allocator.storage
 
- }
 
- // Allocator returns the bound nodes allocator.
 
- func (tree RBTree) Allocator() *Allocator {
 
- 	return tree.allocator
 
- }
 
- // Len returns the number of elements in the tree.
 
- func (tree RBTree) Len() int {
 
- 	return int(tree.count)
 
- }
 
- // CloneShallow performs a shallow copy of the tree - the nodes are assumed to already exist in the allocator.
 
- func (tree RBTree) CloneShallow(allocator *Allocator) *RBTree {
 
- 	clone := tree
 
- 	clone.allocator = allocator
 
- 	return &clone
 
- }
 
- // CloneDeep performs a deep copy of the tree - the nodes are created from scratch.
 
- func (tree RBTree) CloneDeep(allocator *Allocator) *RBTree {
 
- 	clone := &RBTree{
 
- 		count:     tree.count,
 
- 		allocator: allocator,
 
- 	}
 
- 	nodeMap := map[uint32]uint32{}
 
- 	originStorage := tree.storage()
 
- 	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
 
- 		newNode := allocator.malloc()
 
- 		cloneNode := &allocator.storage[newNode]
 
- 		cloneNode.item = *iter.Item()
 
- 		cloneNode.color = originStorage[iter.node].color
 
- 		nodeMap[iter.node] = newNode
 
- 	}
 
- 	cloneStorage := allocator.storage
 
- 	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
 
- 		cloneNode := &cloneStorage[nodeMap[iter.node]]
 
- 		originNode := originStorage[iter.node]
 
- 		cloneNode.left = nodeMap[originNode.left]
 
- 		cloneNode.right = nodeMap[originNode.right]
 
- 		cloneNode.parent = nodeMap[originNode.parent]
 
- 	}
 
- 	clone.root = nodeMap[tree.root]
 
- 	clone.minNode = nodeMap[tree.minNode]
 
- 	clone.maxNode = nodeMap[tree.maxNode]
 
- 	return clone
 
- }
 
- // Erase removes all the nodes from the tree.
 
- func (tree *RBTree) Erase() {
 
- 	nodes := make([]uint32, 0, tree.count)
 
- 	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {
 
- 		nodes = append(nodes, iter.node)
 
- 	}
 
- 	for _, node := range nodes {
 
- 		tree.allocator.free(node)
 
- 	}
 
- 	tree.root = 0
 
- 	tree.minNode = 0
 
- 	tree.maxNode = 0
 
- 	tree.count = 0
 
- }
 
- // Get is a convenience function for finding an element equal to Key. Returns
 
- // nil if not found.
 
- func (tree RBTree) Get(key uint32) *uint32 {
 
- 	n, exact := tree.findGE(key)
 
- 	if exact {
 
- 		return &tree.storage()[n].item.Value
 
- 	}
 
- 	return nil
 
- }
 
- // Min creates an iterator that points to the minimum item in the tree.
 
- // If the tree is empty, returns Limit()
 
- func (tree *RBTree) Min() Iterator {
 
- 	return Iterator{tree, tree.minNode}
 
- }
 
- // Max creates an iterator that points at the maximum item in the tree.
 
- //
 
- // If the tree is empty, returns NegativeLimit().
 
- func (tree *RBTree) Max() Iterator {
 
- 	if tree.maxNode == 0 {
 
- 		return Iterator{tree, negativeLimitNode}
 
- 	}
 
- 	return Iterator{tree, tree.maxNode}
 
- }
 
- // Limit creates an iterator that points beyond the maximum item in the tree.
 
- func (tree *RBTree) Limit() Iterator {
 
- 	return Iterator{tree, 0}
 
- }
 
- // NegativeLimit creates an iterator that points before the minimum item in the tree.
 
- func (tree *RBTree) NegativeLimit() Iterator {
 
- 	return Iterator{tree, negativeLimitNode}
 
- }
 
- // FindGE finds the smallest element N such that N >= Key, and returns the
 
- // iterator pointing to the element. If no such element is found,
 
- // returns tree.Limit().
 
- func (tree *RBTree) FindGE(key uint32) Iterator {
 
- 	n, _ := tree.findGE(key)
 
- 	return Iterator{tree, n}
 
- }
 
- // FindLE finds the largest element N such that N <= Key, and returns the
 
- // iterator pointing to the element. If no such element is found,
 
- // returns iter.NegativeLimit().
 
- func (tree *RBTree) FindLE(key uint32) Iterator {
 
- 	n, exact := tree.findGE(key)
 
- 	if exact {
 
- 		return Iterator{tree, n}
 
- 	}
 
- 	if n != 0 {
 
- 		return Iterator{tree, doPrev(n, tree.storage())}
 
- 	}
 
- 	if tree.maxNode == 0 {
 
- 		return Iterator{tree, negativeLimitNode}
 
- 	}
 
- 	return Iterator{tree, tree.maxNode}
 
- }
 
- // Insert an item. If the item is already in the tree, do nothing and
 
- // return false. Else return true.
 
- func (tree *RBTree) Insert(item Item) (bool, Iterator) {
 
- 	// TODO: delay creating n until it is found to be inserted
 
- 	n := tree.doInsert(item)
 
- 	if n == 0 {
 
- 		return false, Iterator{}
 
- 	}
 
- 	alloc := tree.storage()
 
- 	insN := n
 
- 	alloc[n].color = red
 
- 	for true {
 
- 		// Case 1: N is at the root
 
- 		if alloc[n].parent == 0 {
 
- 			alloc[n].color = black
 
- 			break
 
- 		}
 
- 		// Case 2: The parent is black, so the tree already
 
- 		// satisfies the RB properties
 
- 		if alloc[alloc[n].parent].color == black {
 
- 			break
 
- 		}
 
- 		// Case 3: parent and uncle are both red.
 
- 		// Then paint both black and make grandparent red.
 
- 		grandparent := alloc[alloc[n].parent].parent
 
- 		var uncle uint32
 
- 		if isLeftChild(alloc[n].parent, alloc) {
 
- 			uncle = alloc[grandparent].right
 
- 		} else {
 
- 			uncle = alloc[grandparent].left
 
- 		}
 
- 		if uncle != 0 && alloc[uncle].color == red {
 
- 			alloc[alloc[n].parent].color = black
 
- 			alloc[uncle].color = black
 
- 			alloc[grandparent].color = red
 
- 			n = grandparent
 
- 			continue
 
- 		}
 
- 		// Case 4: parent is red, uncle is black (1)
 
- 		if isRightChild(n, alloc) && isLeftChild(alloc[n].parent, alloc) {
 
- 			tree.rotateLeft(alloc[n].parent)
 
- 			n = alloc[n].left
 
- 			continue
 
- 		}
 
- 		if isLeftChild(n, alloc) && isRightChild(alloc[n].parent, alloc) {
 
- 			tree.rotateRight(alloc[n].parent)
 
- 			n = alloc[n].right
 
- 			continue
 
- 		}
 
- 		// Case 5: parent is read, uncle is black (2)
 
- 		alloc[alloc[n].parent].color = black
 
- 		alloc[grandparent].color = red
 
- 		if isLeftChild(n, alloc) {
 
- 			tree.rotateRight(grandparent)
 
- 		} else {
 
- 			tree.rotateLeft(grandparent)
 
- 		}
 
- 		break
 
- 	}
 
- 	return true, Iterator{tree, insN}
 
- }
 
- // DeleteWithKey deletes an item with the given Key. Returns true iff the item was
 
- // found.
 
- func (tree *RBTree) DeleteWithKey(key uint32) bool {
 
- 	n, exact := tree.findGE(key)
 
- 	if exact {
 
- 		tree.doDelete(n)
 
- 		return true
 
- 	}
 
- 	return false
 
- }
 
- // DeleteWithIterator deletes the current item.
 
- //
 
- // REQUIRES: !iter.Limit() && !iter.NegativeLimit()
 
- func (tree *RBTree) DeleteWithIterator(iter Iterator) {
 
- 	doAssert(!iter.Limit() && !iter.NegativeLimit())
 
- 	tree.doDelete(iter.node)
 
- }
 
- // Iterator allows scanning tree elements in sort order.
 
- //
 
- // Iterator invalidation rule is the same as C++ std::map<>'s. That
 
- // is, if you delete the element that an iterator points to, the
 
- // iterator becomes invalid. For other operation types, the iterator
 
- // remains valid.
 
- type Iterator struct {
 
- 	tree *RBTree
 
- 	node uint32
 
- }
 
- // Equal checks for the underlying nodes equality.
 
- func (iter Iterator) Equal(other Iterator) bool {
 
- 	return iter.node == other.node
 
- }
 
- // Limit checks if the iterator points beyond the max element in the tree.
 
- func (iter Iterator) Limit() bool {
 
- 	return iter.node == 0
 
- }
 
- // Min checks if the iterator points to the minimum element in the tree.
 
- func (iter Iterator) Min() bool {
 
- 	return iter.node == iter.tree.minNode
 
- }
 
- // Max checks if the iterator points to the maximum element in the tree.
 
- func (iter Iterator) Max() bool {
 
- 	return iter.node == iter.tree.maxNode
 
- }
 
- // NegativeLimit checks if the iterator points before the minimum element in the tree.
 
- func (iter Iterator) NegativeLimit() bool {
 
- 	return iter.node == negativeLimitNode
 
- }
 
- // Item returns the current element. Allows mutating the node
 
- // (key to be changed with care!).
 
- //
 
- // The result is nil if iter.Limit() || iter.NegativeLimit().
 
- func (iter Iterator) Item() *Item {
 
- 	if iter.Limit() || iter.NegativeLimit() {
 
- 		return nil
 
- 	}
 
- 	return &iter.tree.storage()[iter.node].item
 
- }
 
- // Next creates a new iterator that points to the successor of the current element.
 
- //
 
- // REQUIRES: !iter.Limit()
 
- func (iter Iterator) Next() Iterator {
 
- 	doAssert(!iter.Limit())
 
- 	if iter.NegativeLimit() {
 
- 		return Iterator{iter.tree, iter.tree.minNode}
 
- 	}
 
- 	return Iterator{iter.tree, doNext(iter.node, iter.tree.storage())}
 
- }
 
- // Prev creates a new iterator that points to the predecessor of the current
 
- // node.
 
- //
 
- // REQUIRES: !iter.NegativeLimit()
 
- func (iter Iterator) Prev() Iterator {
 
- 	doAssert(!iter.NegativeLimit())
 
- 	if !iter.Limit() {
 
- 		return Iterator{iter.tree, doPrev(iter.node, iter.tree.storage())}
 
- 	}
 
- 	if iter.tree.maxNode == 0 {
 
- 		return Iterator{iter.tree, negativeLimitNode}
 
- 	}
 
- 	return Iterator{iter.tree, iter.tree.maxNode}
 
- }
 
- func doAssert(b bool) {
 
- 	if !b {
 
- 		panic("rbtree internal assertion failed")
 
- 	}
 
- }
 
- const (
 
- 	red               = false
 
- 	black             = true
 
- 	negativeLimitNode = math.MaxUint32
 
- )
 
- type node struct {
 
- 	item                Item
 
- 	parent, left, right uint32
 
- 	color               bool // black or red
 
- }
 
- //
 
- // Internal node attribute accessors
 
- //
 
- func getColor(n uint32, allocator []node) bool {
 
- 	if n == 0 {
 
- 		return black
 
- 	}
 
- 	return allocator[n].color
 
- }
 
- func isLeftChild(n uint32, allocator []node) bool {
 
- 	return n == allocator[allocator[n].parent].left
 
- }
 
- func isRightChild(n uint32, allocator []node) bool {
 
- 	return n == allocator[allocator[n].parent].right
 
- }
 
- func sibling(n uint32, allocator []node) uint32 {
 
- 	doAssert(allocator[n].parent != 0)
 
- 	if isLeftChild(n, allocator) {
 
- 		return allocator[allocator[n].parent].right
 
- 	}
 
- 	return allocator[allocator[n].parent].left
 
- }
 
- // Return the minimum node that's larger than N. Return nil if no such
 
- // node is found.
 
- func doNext(n uint32, allocator []node) uint32 {
 
- 	if allocator[n].right != 0 {
 
- 		m := allocator[n].right
 
- 		for allocator[m].left != 0 {
 
- 			m = allocator[m].left
 
- 		}
 
- 		return m
 
- 	}
 
- 	for n != 0 {
 
- 		p := allocator[n].parent
 
- 		if p == 0 {
 
- 			return 0
 
- 		}
 
- 		if isLeftChild(n, allocator) {
 
- 			return p
 
- 		}
 
- 		n = p
 
- 	}
 
- 	return 0
 
- }
 
- // Return the maximum node that's smaller than N. Return nil if no
 
- // such node is found.
 
- func doPrev(n uint32, allocator []node) uint32 {
 
- 	if allocator[n].left != 0 {
 
- 		return maxPredecessor(n, allocator)
 
- 	}
 
- 	for n != 0 {
 
- 		p := allocator[n].parent
 
- 		if p == 0 {
 
- 			break
 
- 		}
 
- 		if isRightChild(n, allocator) {
 
- 			return p
 
- 		}
 
- 		n = p
 
- 	}
 
- 	return negativeLimitNode
 
- }
 
- // Return the predecessor of "n".
 
- func maxPredecessor(n uint32, allocator []node) uint32 {
 
- 	doAssert(allocator[n].left != 0)
 
- 	m := allocator[n].left
 
- 	for allocator[m].right != 0 {
 
- 		m = allocator[m].right
 
- 	}
 
- 	return m
 
- }
 
- //
 
- // Tree methods
 
- //
 
- //
 
- // Private methods
 
- //
 
- func (tree *RBTree) recomputeMinNode() {
 
- 	alloc := tree.storage()
 
- 	tree.minNode = tree.root
 
- 	if tree.minNode != 0 {
 
- 		for alloc[tree.minNode].left != 0 {
 
- 			tree.minNode = alloc[tree.minNode].left
 
- 		}
 
- 	}
 
- }
 
- func (tree *RBTree) recomputeMaxNode() {
 
- 	alloc := tree.storage()
 
- 	tree.maxNode = tree.root
 
- 	if tree.maxNode != 0 {
 
- 		for alloc[tree.maxNode].right != 0 {
 
- 			tree.maxNode = alloc[tree.maxNode].right
 
- 		}
 
- 	}
 
- }
 
- func (tree *RBTree) maybeSetMinNode(n uint32) {
 
- 	alloc := tree.storage()
 
- 	if tree.minNode == 0 {
 
- 		tree.minNode = n
 
- 		tree.maxNode = n
 
- 	} else if alloc[n].item.Key < alloc[tree.minNode].item.Key {
 
- 		tree.minNode = n
 
- 	}
 
- }
 
- func (tree *RBTree) maybeSetMaxNode(n uint32) {
 
- 	alloc := tree.storage()
 
- 	if tree.maxNode == 0 {
 
- 		tree.minNode = n
 
- 		tree.maxNode = n
 
- 	} else if alloc[n].item.Key > alloc[tree.maxNode].item.Key {
 
- 		tree.maxNode = n
 
- 	}
 
- }
 
- // Try inserting "item" into the tree. Return nil if the item is
 
- // already in the tree. Otherwise return a new (leaf) node.
 
- func (tree *RBTree) doInsert(item Item) uint32 {
 
- 	if tree.root == 0 {
 
- 		n := tree.allocator.malloc()
 
- 		tree.storage()[n].item = item
 
- 		tree.root = n
 
- 		tree.minNode = n
 
- 		tree.maxNode = n
 
- 		tree.count++
 
- 		return n
 
- 	}
 
- 	parent := tree.root
 
- 	storage := tree.storage()
 
- 	for true {
 
- 		parentNode := storage[parent]
 
- 		comp := int(item.Key) - int(parentNode.item.Key)
 
- 		if comp == 0 {
 
- 			return 0
 
- 		} else if comp < 0 {
 
- 			if parentNode.left == 0 {
 
- 				n := tree.allocator.malloc()
 
- 				storage = tree.storage()
 
- 				newNode := &storage[n]
 
- 				newNode.item = item
 
- 				newNode.parent = parent
 
- 				storage[parent].left = n
 
- 				tree.count++
 
- 				tree.maybeSetMinNode(n)
 
- 				return n
 
- 			}
 
- 			parent = parentNode.left
 
- 		} else {
 
- 			if parentNode.right == 0 {
 
- 				n := tree.allocator.malloc()
 
- 				storage = tree.storage()
 
- 				newNode := &storage[n]
 
- 				newNode.item = item
 
- 				newNode.parent = parent
 
- 				storage[parent].right = n
 
- 				tree.count++
 
- 				tree.maybeSetMaxNode(n)
 
- 				return n
 
- 			}
 
- 			parent = parentNode.right
 
- 		}
 
- 	}
 
- 	panic("should not reach here")
 
- }
 
- // Find a node whose item >= Key. The 2nd return Value is true iff the
 
- // node.item==Key. Returns (nil, false) if all nodes in the tree are <
 
- // Key.
 
- func (tree RBTree) findGE(key uint32) (uint32, bool) {
 
- 	alloc := tree.storage()
 
- 	n := tree.root
 
- 	for true {
 
- 		if n == 0 {
 
- 			return 0, false
 
- 		}
 
- 		comp := int(key) - int(alloc[n].item.Key)
 
- 		if comp == 0 {
 
- 			return n, true
 
- 		} else if comp < 0 {
 
- 			if alloc[n].left != 0 {
 
- 				n = alloc[n].left
 
- 			} else {
 
- 				return n, false
 
- 			}
 
- 		} else {
 
- 			if alloc[n].right != 0 {
 
- 				n = alloc[n].right
 
- 			} else {
 
- 				succ := doNext(n, alloc)
 
- 				if succ == 0 {
 
- 					return 0, false
 
- 				}
 
- 				return succ, key == alloc[succ].item.Key
 
- 			}
 
- 		}
 
- 	}
 
- 	panic("should not reach here")
 
- }
 
- // Delete N from the tree.
 
- func (tree *RBTree) doDelete(n uint32) {
 
- 	alloc := tree.storage()
 
- 	if alloc[n].left != 0 && alloc[n].right != 0 {
 
- 		pred := maxPredecessor(n, alloc)
 
- 		tree.swapNodes(n, pred)
 
- 	}
 
- 	doAssert(alloc[n].left == 0 || alloc[n].right == 0)
 
- 	child := alloc[n].right
 
- 	if child == 0 {
 
- 		child = alloc[n].left
 
- 	}
 
- 	if alloc[n].color == black {
 
- 		alloc[n].color = getColor(child, alloc)
 
- 		tree.deleteCase1(n)
 
- 	}
 
- 	tree.replaceNode(n, child)
 
- 	if alloc[n].parent == 0 && child != 0 {
 
- 		alloc[child].color = black
 
- 	}
 
- 	tree.allocator.free(n)
 
- 	tree.count--
 
- 	if tree.count == 0 {
 
- 		tree.minNode = 0
 
- 		tree.maxNode = 0
 
- 	} else {
 
- 		if tree.minNode == n {
 
- 			tree.recomputeMinNode()
 
- 		}
 
- 		if tree.maxNode == n {
 
- 			tree.recomputeMaxNode()
 
- 		}
 
- 	}
 
- }
 
- // Move n to the pred's place, and vice versa
 
- //
 
- func (tree *RBTree) swapNodes(n, pred uint32) {
 
- 	doAssert(pred != n)
 
- 	alloc := tree.storage()
 
- 	isLeft := isLeftChild(pred, alloc)
 
- 	tmp := alloc[pred]
 
- 	tree.replaceNode(n, pred)
 
- 	alloc[pred].color = alloc[n].color
 
- 	if tmp.parent == n {
 
- 		// swap the positions of n and pred
 
- 		if isLeft {
 
- 			alloc[pred].left = n
 
- 			alloc[pred].right = alloc[n].right
 
- 			if alloc[pred].right != 0 {
 
- 				alloc[alloc[pred].right].parent = pred
 
- 			}
 
- 		} else {
 
- 			alloc[pred].left = alloc[n].left
 
- 			if alloc[pred].left != 0 {
 
- 				alloc[alloc[pred].left].parent = pred
 
- 			}
 
- 			alloc[pred].right = n
 
- 		}
 
- 		alloc[n].item = tmp.item
 
- 		alloc[n].parent = pred
 
- 		alloc[n].left = tmp.left
 
- 		if alloc[n].left != 0 {
 
- 			alloc[alloc[n].left].parent = n
 
- 		}
 
- 		alloc[n].right = tmp.right
 
- 		if alloc[n].right != 0 {
 
- 			alloc[alloc[n].right].parent = n
 
- 		}
 
- 	} else {
 
- 		alloc[pred].left = alloc[n].left
 
- 		if alloc[pred].left != 0 {
 
- 			alloc[alloc[pred].left].parent = pred
 
- 		}
 
- 		alloc[pred].right = alloc[n].right
 
- 		if alloc[pred].right != 0 {
 
- 			alloc[alloc[pred].right].parent = pred
 
- 		}
 
- 		if isLeft {
 
- 			alloc[tmp.parent].left = n
 
- 		} else {
 
- 			alloc[tmp.parent].right = n
 
- 		}
 
- 		alloc[n].item = tmp.item
 
- 		alloc[n].parent = tmp.parent
 
- 		alloc[n].left = tmp.left
 
- 		if alloc[n].left != 0 {
 
- 			alloc[alloc[n].left].parent = n
 
- 		}
 
- 		alloc[n].right = tmp.right
 
- 		if alloc[n].right != 0 {
 
- 			alloc[alloc[n].right].parent = n
 
- 		}
 
- 	}
 
- 	alloc[n].color = tmp.color
 
- }
 
- func (tree *RBTree) deleteCase1(n uint32) {
 
- 	alloc := tree.storage()
 
- 	for true {
 
- 		if alloc[n].parent != 0 {
 
- 			if getColor(sibling(n, alloc), alloc) == red {
 
- 				alloc[alloc[n].parent].color = red
 
- 				alloc[sibling(n, alloc)].color = black
 
- 				if n == alloc[alloc[n].parent].left {
 
- 					tree.rotateLeft(alloc[n].parent)
 
- 				} else {
 
- 					tree.rotateRight(alloc[n].parent)
 
- 				}
 
- 			}
 
- 			if getColor(alloc[n].parent, alloc) == black &&
 
- 				getColor(sibling(n, alloc), alloc) == black &&
 
- 				getColor(alloc[sibling(n, alloc)].left, alloc) == black &&
 
- 				getColor(alloc[sibling(n, alloc)].right, alloc) == black {
 
- 				alloc[sibling(n, alloc)].color = red
 
- 				n = alloc[n].parent
 
- 				continue
 
- 			} else {
 
- 				// case 4
 
- 				if getColor(alloc[n].parent, alloc) == red &&
 
- 					getColor(sibling(n, alloc), alloc) == black &&
 
- 					getColor(alloc[sibling(n, alloc)].left, alloc) == black &&
 
- 					getColor(alloc[sibling(n, alloc)].right, alloc) == black {
 
- 					alloc[sibling(n, alloc)].color = red
 
- 					alloc[alloc[n].parent].color = black
 
- 				} else {
 
- 					tree.deleteCase5(n)
 
- 				}
 
- 			}
 
- 		}
 
- 		break
 
- 	}
 
- }
 
- func (tree *RBTree) deleteCase5(n uint32) {
 
- 	alloc := tree.storage()
 
- 	if n == alloc[alloc[n].parent].left &&
 
- 		getColor(sibling(n, alloc), alloc) == black &&
 
- 		getColor(alloc[sibling(n, alloc)].left, alloc) == red &&
 
- 		getColor(alloc[sibling(n, alloc)].right, alloc) == black {
 
- 		alloc[sibling(n, alloc)].color = red
 
- 		alloc[alloc[sibling(n, alloc)].left].color = black
 
- 		tree.rotateRight(sibling(n, alloc))
 
- 	} else if n == alloc[alloc[n].parent].right &&
 
- 		getColor(sibling(n, alloc), alloc) == black &&
 
- 		getColor(alloc[sibling(n, alloc)].right, alloc) == red &&
 
- 		getColor(alloc[sibling(n, alloc)].left, alloc) == black {
 
- 		alloc[sibling(n, alloc)].color = red
 
- 		alloc[alloc[sibling(n, alloc)].right].color = black
 
- 		tree.rotateLeft(sibling(n, alloc))
 
- 	}
 
- 	// case 6
 
- 	alloc[sibling(n, alloc)].color = getColor(alloc[n].parent, alloc)
 
- 	alloc[alloc[n].parent].color = black
 
- 	if n == alloc[alloc[n].parent].left {
 
- 		doAssert(getColor(alloc[sibling(n, alloc)].right, alloc) == red)
 
- 		alloc[alloc[sibling(n, alloc)].right].color = black
 
- 		tree.rotateLeft(alloc[n].parent)
 
- 	} else {
 
- 		doAssert(getColor(alloc[sibling(n, alloc)].left, alloc) == red)
 
- 		alloc[alloc[sibling(n, alloc)].left].color = black
 
- 		tree.rotateRight(alloc[n].parent)
 
- 	}
 
- }
 
- func (tree *RBTree) replaceNode(oldn, newn uint32) {
 
- 	alloc := tree.storage()
 
- 	if alloc[oldn].parent == 0 {
 
- 		tree.root = newn
 
- 	} else {
 
- 		if oldn == alloc[alloc[oldn].parent].left {
 
- 			alloc[alloc[oldn].parent].left = newn
 
- 		} else {
 
- 			alloc[alloc[oldn].parent].right = newn
 
- 		}
 
- 	}
 
- 	if newn != 0 {
 
- 		alloc[newn].parent = alloc[oldn].parent
 
- 	}
 
- }
 
- /*
 
-     X		     Y
 
-   A   Y	    =>     X   C
 
-      B C 	  A B
 
- */
 
- func (tree *RBTree) rotateLeft(x uint32) {
 
- 	alloc := tree.storage()
 
- 	y := alloc[x].right
 
- 	alloc[x].right = alloc[y].left
 
- 	if alloc[y].left != 0 {
 
- 		alloc[alloc[y].left].parent = x
 
- 	}
 
- 	alloc[y].parent = alloc[x].parent
 
- 	if alloc[x].parent == 0 {
 
- 		tree.root = y
 
- 	} else {
 
- 		if isLeftChild(x, alloc) {
 
- 			alloc[alloc[x].parent].left = y
 
- 		} else {
 
- 			alloc[alloc[x].parent].right = y
 
- 		}
 
- 	}
 
- 	alloc[y].left = x
 
- 	alloc[x].parent = y
 
- }
 
- /*
 
-      Y           X
 
-    X   C  =>   A   Y
 
-   A B             B C
 
- */
 
- func (tree *RBTree) rotateRight(y uint32) {
 
- 	alloc := tree.storage()
 
- 	x := alloc[y].left
 
- 	// Move "B"
 
- 	alloc[y].left = alloc[x].right
 
- 	if alloc[x].right != 0 {
 
- 		alloc[alloc[x].right].parent = y
 
- 	}
 
- 	alloc[x].parent = alloc[y].parent
 
- 	if alloc[y].parent == 0 {
 
- 		tree.root = x
 
- 	} else {
 
- 		if isLeftChild(y, alloc) {
 
- 			alloc[alloc[y].parent].left = x
 
- 		} else {
 
- 			alloc[alloc[y].parent].right = x
 
- 		}
 
- 	}
 
- 	alloc[x].right = y
 
- 	alloc[y].parent = x
 
- }
 
 
  |