| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067 | package rbtreeimport (	"fmt"	"math"	"os"	"sync"	"github.com/gogo/protobuf/sortkeys"	"gopkg.in/src-d/go-git.v4/utils/binary")//// Public definitions//// Item is the object stored in each tree node.type Item struct {	Key   uint32	Value uint32}// Allocator is the allocator for nodes in a RBTree.type Allocator struct {	HibernationThreshold int	storage              []node	gaps                 map[uint32]bool	hibernatedData       [7][]byte	hibernatedStorageLen int	hibernatedGapsLen    int}// NewAllocator creates a new allocator for RBTree's nodes.func NewAllocator() *Allocator {	return &Allocator{		storage: []node{},		gaps:    map[uint32]bool{},	}}// Size returns the currently allocated size.func (allocator Allocator) Size() int {	return len(allocator.storage)}// Used returns the number of nodes contained in the allocator.func (allocator Allocator) Used() int {	if allocator.storage == nil {		panic("hibernated allocators cannot be used")	}	return len(allocator.storage) - len(allocator.gaps)}// Clone copies an existing RBTree allocator.func (allocator Allocator) Clone() *Allocator {	if allocator.storage == nil {		panic("cannot clone a hibernated allocator")	}	newAllocator := &Allocator{		HibernationThreshold: allocator.HibernationThreshold,		storage:              make([]node, len(allocator.storage), cap(allocator.storage)),		gaps:                 map[uint32]bool{},	}	copy(newAllocator.storage, allocator.storage)	for key, val := range allocator.gaps {		newAllocator.gaps[key] = val	}	return newAllocator}// Hibernate compresses the allocated memory.func (allocator *Allocator) Hibernate() {	if allocator.hibernatedStorageLen > 0 {		panic("cannot hibernate an already hibernated Allocator")	}	if len(allocator.storage) < allocator.HibernationThreshold {		return	}	allocator.hibernatedStorageLen = len(allocator.storage)	if allocator.hibernatedStorageLen == 0 {		return	}	buffers := [6][]uint32{}	for i := 0; i < len(buffers); i++ {		buffers[i] = make([]uint32, len(allocator.storage))	}	// we deinterleave to achieve a better compression ratio	for i, n := range allocator.storage {		buffers[0][i] = n.item.Key		buffers[1][i] = n.item.Value		buffers[2][i] = n.left		buffers[3][i] = n.parent		buffers[4][i] = n.right		if n.color {			buffers[5][i] = 1		}	}	allocator.storage = nil	wg := &sync.WaitGroup{}	wg.Add(len(buffers) + 1)	for i, buffer := range buffers {		go func(i int, buffer []uint32) {			allocator.hibernatedData[i] = CompressUInt32Slice(buffer)			buffers[i] = nil			wg.Done()		}(i, buffer)	}	// compress gaps	go func() {		if len(allocator.gaps) > 0 {			allocator.hibernatedGapsLen = len(allocator.gaps)			gapsBuffer := make([]uint32, len(allocator.gaps))			i := 0			for key := range allocator.gaps {				gapsBuffer[i] = key				i++			}			sortkeys.Uint32s(gapsBuffer)			allocator.hibernatedData[len(buffers)] = CompressUInt32Slice(gapsBuffer)		}		allocator.gaps = nil		wg.Done()	}()	wg.Wait()}// Boot performs the opposite of Hibernate() - decompresses and restores the allocated memory.func (allocator *Allocator) Boot() {	if allocator.hibernatedStorageLen == 0 {		// not hibernated		return	}	if allocator.hibernatedData[0] == nil {		panic("cannot boot a serialized Allocator")	}	allocator.gaps = map[uint32]bool{}	buffers := [6][]uint32{}	wg := &sync.WaitGroup{}	wg.Add(len(buffers) + 1)	for i := 0; i < len(buffers); i++ {		go func(i int) {			buffers[i] = make([]uint32, allocator.hibernatedStorageLen)			DecompressUInt32Slice(allocator.hibernatedData[i], buffers[i])			allocator.hibernatedData[i] = nil			wg.Done()		}(i)	}	go func() {		if allocator.hibernatedGapsLen > 0 {			gapData := allocator.hibernatedData[len(buffers)]			buffer := make([]uint32, allocator.hibernatedGapsLen)			DecompressUInt32Slice(gapData, buffer)			for _, key := range buffer {				allocator.gaps[key] = true			}			allocator.hibernatedData[len(buffers)] = nil			allocator.hibernatedGapsLen = 0		}		wg.Done()	}()	wg.Wait()	allocator.storage = make([]node, allocator.hibernatedStorageLen, (allocator.hibernatedStorageLen*3)/2)	for i := range allocator.storage {		n := &allocator.storage[i]		n.item.Key = buffers[0][i]		n.item.Value = buffers[1][i]		n.left = buffers[2][i]		n.parent = buffers[3][i]		n.right = buffers[4][i]		n.color = buffers[5][i] > 0	}	allocator.hibernatedStorageLen = 0}// Serialize writes the hibernated allocator on disk.func (allocator *Allocator) Serialize(path string) error {	if allocator.storage != nil {		panic("serialization requires the hibernated state")	}	file, err := os.Create(path)	if err != nil {		return err	}	defer file.Close()	err = binary.WriteVariableWidthInt(file, int64(allocator.hibernatedStorageLen))	if err != nil {		return err	}	err = binary.WriteVariableWidthInt(file, int64(allocator.hibernatedGapsLen))	if err != nil {		return err	}	for i, hse := range allocator.hibernatedData {		err = binary.WriteVariableWidthInt(file, int64(len(hse)))		if err != nil {			return err		}		_, err = file.Write(hse)		if err != nil {			return err		}		allocator.hibernatedData[i] = nil	}	return nil}// Deserialize reads a hibernated allocator from disk.func (allocator *Allocator) Deserialize(path string) error {	if allocator.storage != nil {		panic("deserialization requires the hibernated state")	}	file, err := os.Open(path)	if err != nil {		return err	}	defer file.Close()	x, err := binary.ReadVariableWidthInt(file)	if err != nil {		return err	}	allocator.hibernatedStorageLen = int(x)	x, err = binary.ReadVariableWidthInt(file)	if err != nil {		return err	}	allocator.hibernatedGapsLen = int(x)	for i := range allocator.hibernatedData {		x, err = binary.ReadVariableWidthInt(file)		if err != nil {			return err		}		allocator.hibernatedData[i] = make([]byte, int(x))		n, err := file.Read(allocator.hibernatedData[i])		if err != nil {			return err		}		if n != int(x) {			return fmt.Errorf("incomplete read %d: %d instead of %d", i, n, x)		}	}	return nil}func (allocator *Allocator) malloc() uint32 {	if allocator.storage == nil {		panic("hibernated allocators cannot be used")	}	if len(allocator.gaps) > 0 {		var key uint32		for key = range allocator.gaps {			break		}		delete(allocator.gaps, key)		return key	}	n := len(allocator.storage)	if n == 0 {		// zero is reserved		allocator.storage = append(allocator.storage, node{})		n = 1	}	if n == negativeLimitNode-1 {		// math.MaxUint32 is reserved		panic("the size of my RBTree allocator has reached the maximum value for uint32, sorry")	}	doAssert(n < negativeLimitNode)	allocator.storage = append(allocator.storage, node{})	return uint32(n)}func (allocator *Allocator) free(n uint32) {	if allocator.storage == nil {		panic("hibernated allocators cannot be used")	}	if n == 0 {		panic("node #0 is special and cannot be deallocated")	}	_, exists := allocator.gaps[n]	doAssert(!exists)	allocator.storage[n] = node{}	allocator.gaps[n] = true}// RBTree is a red-black tree with an API similar to C++ STL's.//// The implementation is inspired (read: stolen) from:// http://en.literateprograms.org/Red-black_tree_(C)#chunk use:private function prototypes.//// The code was optimized for the simple integer types of Key and Value.// The code was further optimized for using allocators.// Credits: Yaz Saito.type RBTree struct {	// Root of the tree	root uint32	// The minimum and maximum nodes under the tree.	minNode, maxNode uint32	// Number of nodes under root, including the root	count int32	// Nodes allocator	allocator *Allocator}// NewRBTree creates a new red-black binary tree.func NewRBTree(allocator *Allocator) *RBTree {	return &RBTree{allocator: allocator}}func (tree RBTree) storage() []node {	return tree.allocator.storage}// Allocator returns the bound nodes allocator.func (tree RBTree) Allocator() *Allocator {	return tree.allocator}// Len returns the number of elements in the tree.func (tree RBTree) Len() int {	return int(tree.count)}// CloneShallow performs a shallow copy of the tree - the nodes are assumed to already exist in the allocator.func (tree RBTree) CloneShallow(allocator *Allocator) *RBTree {	clone := tree	clone.allocator = allocator	return &clone}// CloneDeep performs a deep copy of the tree - the nodes are created from scratch.func (tree RBTree) CloneDeep(allocator *Allocator) *RBTree {	clone := &RBTree{		count:     tree.count,		allocator: allocator,	}	nodeMap := map[uint32]uint32{}	originStorage := tree.storage()	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {		newNode := allocator.malloc()		cloneNode := &allocator.storage[newNode]		cloneNode.item = *iter.Item()		cloneNode.color = originStorage[iter.node].color		nodeMap[iter.node] = newNode	}	cloneStorage := allocator.storage	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {		cloneNode := &cloneStorage[nodeMap[iter.node]]		originNode := originStorage[iter.node]		cloneNode.left = nodeMap[originNode.left]		cloneNode.right = nodeMap[originNode.right]		cloneNode.parent = nodeMap[originNode.parent]	}	clone.root = nodeMap[tree.root]	clone.minNode = nodeMap[tree.minNode]	clone.maxNode = nodeMap[tree.maxNode]	return clone}// Erase removes all the nodes from the tree.func (tree *RBTree) Erase() {	nodes := make([]uint32, 0, tree.count)	for iter := tree.Min(); !iter.Limit(); iter = iter.Next() {		nodes = append(nodes, iter.node)	}	for _, node := range nodes {		tree.allocator.free(node)	}	tree.root = 0	tree.minNode = 0	tree.maxNode = 0	tree.count = 0}// Get is a convenience function for finding an element equal to Key. Returns// nil if not found.func (tree RBTree) Get(key uint32) *uint32 {	n, exact := tree.findGE(key)	if exact {		return &tree.storage()[n].item.Value	}	return nil}// Min creates an iterator that points to the minimum item in the tree.// If the tree is empty, returns Limit()func (tree *RBTree) Min() Iterator {	return Iterator{tree, tree.minNode}}// Max creates an iterator that points at the maximum item in the tree.//// If the tree is empty, returns NegativeLimit().func (tree *RBTree) Max() Iterator {	if tree.maxNode == 0 {		return Iterator{tree, negativeLimitNode}	}	return Iterator{tree, tree.maxNode}}// Limit creates an iterator that points beyond the maximum item in the tree.func (tree *RBTree) Limit() Iterator {	return Iterator{tree, 0}}// NegativeLimit creates an iterator that points before the minimum item in the tree.func (tree *RBTree) NegativeLimit() Iterator {	return Iterator{tree, negativeLimitNode}}// FindGE finds the smallest element N such that N >= Key, and returns the// iterator pointing to the element. If no such element is found,// returns tree.Limit().func (tree *RBTree) FindGE(key uint32) Iterator {	n, _ := tree.findGE(key)	return Iterator{tree, n}}// FindLE finds the largest element N such that N <= Key, and returns the// iterator pointing to the element. If no such element is found,// returns iter.NegativeLimit().func (tree *RBTree) FindLE(key uint32) Iterator {	n, exact := tree.findGE(key)	if exact {		return Iterator{tree, n}	}	if n != 0 {		return Iterator{tree, doPrev(n, tree.storage())}	}	if tree.maxNode == 0 {		return Iterator{tree, negativeLimitNode}	}	return Iterator{tree, tree.maxNode}}// Insert an item. If the item is already in the tree, do nothing and// return false. Else return true.func (tree *RBTree) Insert(item Item) (bool, Iterator) {	// TODO: delay creating n until it is found to be inserted	n := tree.doInsert(item)	if n == 0 {		return false, Iterator{}	}	alloc := tree.storage()	insN := n	alloc[n].color = red	for true {		// Case 1: N is at the root		if alloc[n].parent == 0 {			alloc[n].color = black			break		}		// Case 2: The parent is black, so the tree already		// satisfies the RB properties		if alloc[alloc[n].parent].color == black {			break		}		// Case 3: parent and uncle are both red.		// Then paint both black and make grandparent red.		grandparent := alloc[alloc[n].parent].parent		var uncle uint32		if isLeftChild(alloc[n].parent, alloc) {			uncle = alloc[grandparent].right		} else {			uncle = alloc[grandparent].left		}		if uncle != 0 && alloc[uncle].color == red {			alloc[alloc[n].parent].color = black			alloc[uncle].color = black			alloc[grandparent].color = red			n = grandparent			continue		}		// Case 4: parent is red, uncle is black (1)		if isRightChild(n, alloc) && isLeftChild(alloc[n].parent, alloc) {			tree.rotateLeft(alloc[n].parent)			n = alloc[n].left			continue		}		if isLeftChild(n, alloc) && isRightChild(alloc[n].parent, alloc) {			tree.rotateRight(alloc[n].parent)			n = alloc[n].right			continue		}		// Case 5: parent is read, uncle is black (2)		alloc[alloc[n].parent].color = black		alloc[grandparent].color = red		if isLeftChild(n, alloc) {			tree.rotateRight(grandparent)		} else {			tree.rotateLeft(grandparent)		}		break	}	return true, Iterator{tree, insN}}// DeleteWithKey deletes an item with the given Key. Returns true iff the item was// found.func (tree *RBTree) DeleteWithKey(key uint32) bool {	n, exact := tree.findGE(key)	if exact {		tree.doDelete(n)		return true	}	return false}// DeleteWithIterator deletes the current item.//// REQUIRES: !iter.Limit() && !iter.NegativeLimit()func (tree *RBTree) DeleteWithIterator(iter Iterator) {	doAssert(!iter.Limit() && !iter.NegativeLimit())	tree.doDelete(iter.node)}// Iterator allows scanning tree elements in sort order.//// Iterator invalidation rule is the same as C++ std::map<>'s. That// is, if you delete the element that an iterator points to, the// iterator becomes invalid. For other operation types, the iterator// remains valid.type Iterator struct {	tree *RBTree	node uint32}// Equal checks for the underlying nodes equality.func (iter Iterator) Equal(other Iterator) bool {	return iter.node == other.node}// Limit checks if the iterator points beyond the max element in the tree.func (iter Iterator) Limit() bool {	return iter.node == 0}// Min checks if the iterator points to the minimum element in the tree.func (iter Iterator) Min() bool {	return iter.node == iter.tree.minNode}// Max checks if the iterator points to the maximum element in the tree.func (iter Iterator) Max() bool {	return iter.node == iter.tree.maxNode}// NegativeLimit checks if the iterator points before the minimum element in the tree.func (iter Iterator) NegativeLimit() bool {	return iter.node == negativeLimitNode}// Item returns the current element. Allows mutating the node// (key to be changed with care!).//// The result is nil if iter.Limit() || iter.NegativeLimit().func (iter Iterator) Item() *Item {	if iter.Limit() || iter.NegativeLimit() {		return nil	}	return &iter.tree.storage()[iter.node].item}// Next creates a new iterator that points to the successor of the current element.//// REQUIRES: !iter.Limit()func (iter Iterator) Next() Iterator {	doAssert(!iter.Limit())	if iter.NegativeLimit() {		return Iterator{iter.tree, iter.tree.minNode}	}	return Iterator{iter.tree, doNext(iter.node, iter.tree.storage())}}// Prev creates a new iterator that points to the predecessor of the current// node.//// REQUIRES: !iter.NegativeLimit()func (iter Iterator) Prev() Iterator {	doAssert(!iter.NegativeLimit())	if !iter.Limit() {		return Iterator{iter.tree, doPrev(iter.node, iter.tree.storage())}	}	if iter.tree.maxNode == 0 {		return Iterator{iter.tree, negativeLimitNode}	}	return Iterator{iter.tree, iter.tree.maxNode}}func doAssert(b bool) {	if !b {		panic("rbtree internal assertion failed")	}}const (	red               = false	black             = true	negativeLimitNode = math.MaxUint32)type node struct {	item                Item	parent, left, right uint32	color               bool // black or red}//// Internal node attribute accessors//func getColor(n uint32, allocator []node) bool {	if n == 0 {		return black	}	return allocator[n].color}func isLeftChild(n uint32, allocator []node) bool {	return n == allocator[allocator[n].parent].left}func isRightChild(n uint32, allocator []node) bool {	return n == allocator[allocator[n].parent].right}func sibling(n uint32, allocator []node) uint32 {	doAssert(allocator[n].parent != 0)	if isLeftChild(n, allocator) {		return allocator[allocator[n].parent].right	}	return allocator[allocator[n].parent].left}// Return the minimum node that's larger than N. Return nil if no such// node is found.func doNext(n uint32, allocator []node) uint32 {	if allocator[n].right != 0 {		m := allocator[n].right		for allocator[m].left != 0 {			m = allocator[m].left		}		return m	}	for n != 0 {		p := allocator[n].parent		if p == 0 {			return 0		}		if isLeftChild(n, allocator) {			return p		}		n = p	}	return 0}// Return the maximum node that's smaller than N. Return nil if no// such node is found.func doPrev(n uint32, allocator []node) uint32 {	if allocator[n].left != 0 {		return maxPredecessor(n, allocator)	}	for n != 0 {		p := allocator[n].parent		if p == 0 {			break		}		if isRightChild(n, allocator) {			return p		}		n = p	}	return negativeLimitNode}// Return the predecessor of "n".func maxPredecessor(n uint32, allocator []node) uint32 {	doAssert(allocator[n].left != 0)	m := allocator[n].left	for allocator[m].right != 0 {		m = allocator[m].right	}	return m}//// Tree methods////// Private methods//func (tree *RBTree) recomputeMinNode() {	alloc := tree.storage()	tree.minNode = tree.root	if tree.minNode != 0 {		for alloc[tree.minNode].left != 0 {			tree.minNode = alloc[tree.minNode].left		}	}}func (tree *RBTree) recomputeMaxNode() {	alloc := tree.storage()	tree.maxNode = tree.root	if tree.maxNode != 0 {		for alloc[tree.maxNode].right != 0 {			tree.maxNode = alloc[tree.maxNode].right		}	}}func (tree *RBTree) maybeSetMinNode(n uint32) {	alloc := tree.storage()	if tree.minNode == 0 {		tree.minNode = n		tree.maxNode = n	} else if alloc[n].item.Key < alloc[tree.minNode].item.Key {		tree.minNode = n	}}func (tree *RBTree) maybeSetMaxNode(n uint32) {	alloc := tree.storage()	if tree.maxNode == 0 {		tree.minNode = n		tree.maxNode = n	} else if alloc[n].item.Key > alloc[tree.maxNode].item.Key {		tree.maxNode = n	}}// Try inserting "item" into the tree. Return nil if the item is// already in the tree. Otherwise return a new (leaf) node.func (tree *RBTree) doInsert(item Item) uint32 {	if tree.root == 0 {		n := tree.allocator.malloc()		tree.storage()[n].item = item		tree.root = n		tree.minNode = n		tree.maxNode = n		tree.count++		return n	}	parent := tree.root	storage := tree.storage()	for true {		parentNode := storage[parent]		comp := int(item.Key) - int(parentNode.item.Key)		if comp == 0 {			return 0		} else if comp < 0 {			if parentNode.left == 0 {				n := tree.allocator.malloc()				storage = tree.storage()				newNode := &storage[n]				newNode.item = item				newNode.parent = parent				storage[parent].left = n				tree.count++				tree.maybeSetMinNode(n)				return n			}			parent = parentNode.left		} else {			if parentNode.right == 0 {				n := tree.allocator.malloc()				storage = tree.storage()				newNode := &storage[n]				newNode.item = item				newNode.parent = parent				storage[parent].right = n				tree.count++				tree.maybeSetMaxNode(n)				return n			}			parent = parentNode.right		}	}	panic("should not reach here")}// Find a node whose item >= Key. The 2nd return Value is true iff the// node.item==Key. Returns (nil, false) if all nodes in the tree are <// Key.func (tree RBTree) findGE(key uint32) (uint32, bool) {	alloc := tree.storage()	n := tree.root	for true {		if n == 0 {			return 0, false		}		comp := int(key) - int(alloc[n].item.Key)		if comp == 0 {			return n, true		} else if comp < 0 {			if alloc[n].left != 0 {				n = alloc[n].left			} else {				return n, false			}		} else {			if alloc[n].right != 0 {				n = alloc[n].right			} else {				succ := doNext(n, alloc)				if succ == 0 {					return 0, false				}				return succ, key == alloc[succ].item.Key			}		}	}	panic("should not reach here")}// Delete N from the tree.func (tree *RBTree) doDelete(n uint32) {	alloc := tree.storage()	if alloc[n].left != 0 && alloc[n].right != 0 {		pred := maxPredecessor(n, alloc)		tree.swapNodes(n, pred)	}	doAssert(alloc[n].left == 0 || alloc[n].right == 0)	child := alloc[n].right	if child == 0 {		child = alloc[n].left	}	if alloc[n].color == black {		alloc[n].color = getColor(child, alloc)		tree.deleteCase1(n)	}	tree.replaceNode(n, child)	if alloc[n].parent == 0 && child != 0 {		alloc[child].color = black	}	tree.allocator.free(n)	tree.count--	if tree.count == 0 {		tree.minNode = 0		tree.maxNode = 0	} else {		if tree.minNode == n {			tree.recomputeMinNode()		}		if tree.maxNode == n {			tree.recomputeMaxNode()		}	}}// Move n to the pred's place, and vice versa//func (tree *RBTree) swapNodes(n, pred uint32) {	doAssert(pred != n)	alloc := tree.storage()	isLeft := isLeftChild(pred, alloc)	tmp := alloc[pred]	tree.replaceNode(n, pred)	alloc[pred].color = alloc[n].color	if tmp.parent == n {		// swap the positions of n and pred		if isLeft {			alloc[pred].left = n			alloc[pred].right = alloc[n].right			if alloc[pred].right != 0 {				alloc[alloc[pred].right].parent = pred			}		} else {			alloc[pred].left = alloc[n].left			if alloc[pred].left != 0 {				alloc[alloc[pred].left].parent = pred			}			alloc[pred].right = n		}		alloc[n].item = tmp.item		alloc[n].parent = pred		alloc[n].left = tmp.left		if alloc[n].left != 0 {			alloc[alloc[n].left].parent = n		}		alloc[n].right = tmp.right		if alloc[n].right != 0 {			alloc[alloc[n].right].parent = n		}	} else {		alloc[pred].left = alloc[n].left		if alloc[pred].left != 0 {			alloc[alloc[pred].left].parent = pred		}		alloc[pred].right = alloc[n].right		if alloc[pred].right != 0 {			alloc[alloc[pred].right].parent = pred		}		if isLeft {			alloc[tmp.parent].left = n		} else {			alloc[tmp.parent].right = n		}		alloc[n].item = tmp.item		alloc[n].parent = tmp.parent		alloc[n].left = tmp.left		if alloc[n].left != 0 {			alloc[alloc[n].left].parent = n		}		alloc[n].right = tmp.right		if alloc[n].right != 0 {			alloc[alloc[n].right].parent = n		}	}	alloc[n].color = tmp.color}func (tree *RBTree) deleteCase1(n uint32) {	alloc := tree.storage()	for true {		if alloc[n].parent != 0 {			if getColor(sibling(n, alloc), alloc) == red {				alloc[alloc[n].parent].color = red				alloc[sibling(n, alloc)].color = black				if n == alloc[alloc[n].parent].left {					tree.rotateLeft(alloc[n].parent)				} else {					tree.rotateRight(alloc[n].parent)				}			}			if getColor(alloc[n].parent, alloc) == black &&				getColor(sibling(n, alloc), alloc) == black &&				getColor(alloc[sibling(n, alloc)].left, alloc) == black &&				getColor(alloc[sibling(n, alloc)].right, alloc) == black {				alloc[sibling(n, alloc)].color = red				n = alloc[n].parent				continue			} else {				// case 4				if getColor(alloc[n].parent, alloc) == red &&					getColor(sibling(n, alloc), alloc) == black &&					getColor(alloc[sibling(n, alloc)].left, alloc) == black &&					getColor(alloc[sibling(n, alloc)].right, alloc) == black {					alloc[sibling(n, alloc)].color = red					alloc[alloc[n].parent].color = black				} else {					tree.deleteCase5(n)				}			}		}		break	}}func (tree *RBTree) deleteCase5(n uint32) {	alloc := tree.storage()	if n == alloc[alloc[n].parent].left &&		getColor(sibling(n, alloc), alloc) == black &&		getColor(alloc[sibling(n, alloc)].left, alloc) == red &&		getColor(alloc[sibling(n, alloc)].right, alloc) == black {		alloc[sibling(n, alloc)].color = red		alloc[alloc[sibling(n, alloc)].left].color = black		tree.rotateRight(sibling(n, alloc))	} else if n == alloc[alloc[n].parent].right &&		getColor(sibling(n, alloc), alloc) == black &&		getColor(alloc[sibling(n, alloc)].right, alloc) == red &&		getColor(alloc[sibling(n, alloc)].left, alloc) == black {		alloc[sibling(n, alloc)].color = red		alloc[alloc[sibling(n, alloc)].right].color = black		tree.rotateLeft(sibling(n, alloc))	}	// case 6	alloc[sibling(n, alloc)].color = getColor(alloc[n].parent, alloc)	alloc[alloc[n].parent].color = black	if n == alloc[alloc[n].parent].left {		doAssert(getColor(alloc[sibling(n, alloc)].right, alloc) == red)		alloc[alloc[sibling(n, alloc)].right].color = black		tree.rotateLeft(alloc[n].parent)	} else {		doAssert(getColor(alloc[sibling(n, alloc)].left, alloc) == red)		alloc[alloc[sibling(n, alloc)].left].color = black		tree.rotateRight(alloc[n].parent)	}}func (tree *RBTree) replaceNode(oldn, newn uint32) {	alloc := tree.storage()	if alloc[oldn].parent == 0 {		tree.root = newn	} else {		if oldn == alloc[alloc[oldn].parent].left {			alloc[alloc[oldn].parent].left = newn		} else {			alloc[alloc[oldn].parent].right = newn		}	}	if newn != 0 {		alloc[newn].parent = alloc[oldn].parent	}}/*    X		     Y  A   Y	    =>     X   C     B C 	  A B*/func (tree *RBTree) rotateLeft(x uint32) {	alloc := tree.storage()	y := alloc[x].right	alloc[x].right = alloc[y].left	if alloc[y].left != 0 {		alloc[alloc[y].left].parent = x	}	alloc[y].parent = alloc[x].parent	if alloc[x].parent == 0 {		tree.root = y	} else {		if isLeftChild(x, alloc) {			alloc[alloc[x].parent].left = y		} else {			alloc[alloc[x].parent].right = y		}	}	alloc[y].left = x	alloc[x].parent = y}/*     Y           X   X   C  =>   A   Y  A B             B C*/func (tree *RBTree) rotateRight(y uint32) {	alloc := tree.storage()	x := alloc[y].left	// Move "B"	alloc[y].left = alloc[x].right	if alloc[x].right != 0 {		alloc[alloc[x].right].parent = y	}	alloc[x].parent = alloc[y].parent	if alloc[y].parent == 0 {		tree.root = x	} else {		if isLeftChild(y, alloc) {			alloc[alloc[y].parent].left = x		} else {			alloc[alloc[y].parent].right = x		}	}	alloc[x].right = y	alloc[y].parent = x}
 |