123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740 |
- package rbtree
- //
- // Public definitions
- //
- // Item is the object stored in each tree node.
- type Item struct {
- Key int
- Value int
- }
- // RBTree created by Yaz Saito on 06/10/12.
- //
- // A red-black tree with an API similar to C++ STL's.
- //
- // The implementation is inspired (read: stolen) from:
- // http://en.literateprograms.org/Red-black_tree_(C)#chunk use:private function prototypes.
- //
- // The code was optimized for the simple integer types of Key and Value.
- type RBTree struct {
- // Root of the tree
- root *node
- // The minimum and maximum nodes under the tree.
- minNode, maxNode *node
- // Number of nodes under root, including the root
- count int
- }
- // Len returns the number of elements in the tree.
- func (tree *RBTree) Len() int {
- return tree.count
- }
- // Clone performs a deep copy of the tree.
- func (tree *RBTree) Clone() *RBTree {
- clone := &RBTree{}
- clone.count = tree.count
- nodeMap := map[*node]*node{}
- queue := []*node{tree.root}
- for len(queue) > 0 {
- head := queue[len(queue)-1]
- queue = queue[:len(queue)-1]
- headCopy := *head
- nodeMap[head] = &headCopy
- if head.left != nil {
- queue = append(queue, head.left)
- }
- if head.right != nil {
- queue = append(queue, head.right)
- }
- }
- for _, mapped := range nodeMap {
- if mapped.parent != nil {
- mapped.parent = nodeMap[mapped.parent]
- }
- if mapped.left != nil {
- mapped.left = nodeMap[mapped.left]
- }
- if mapped.right != nil {
- mapped.right = nodeMap[mapped.right]
- }
- }
- clone.root = nodeMap[tree.root]
- clone.minNode = nodeMap[tree.minNode]
- clone.maxNode = nodeMap[tree.maxNode]
- return clone
- }
- // Get is a convenience function for finding an element equal to Key. Returns
- // nil if not found.
- func (tree *RBTree) Get(key int) *int {
- n, exact := tree.findGE(key)
- if exact {
- return &n.item.Value
- }
- return nil
- }
- // Min creates an iterator that points to the minimum item in the tree.
- // If the tree is empty, returns Limit()
- func (tree *RBTree) Min() Iterator {
- return Iterator{tree, tree.minNode}
- }
- // Max creates an iterator that points at the maximum item in the tree.
- //
- // If the tree is empty, returns NegativeLimit().
- func (tree *RBTree) Max() Iterator {
- if tree.maxNode == nil {
- return Iterator{tree, negativeLimitNode}
- }
- return Iterator{tree, tree.maxNode}
- }
- // Limit creates an iterator that points beyond the maximum item in the tree.
- func (tree *RBTree) Limit() Iterator {
- return Iterator{tree, nil}
- }
- // NegativeLimit creates an iterator that points before the minimum item in the tree.
- func (tree *RBTree) NegativeLimit() Iterator {
- return Iterator{tree, negativeLimitNode}
- }
- // FindGE finds the smallest element N such that N >= Key, and returns the
- // iterator pointing to the element. If no such element is found,
- // returns tree.Limit().
- func (tree *RBTree) FindGE(key int) Iterator {
- n, _ := tree.findGE(key)
- return Iterator{tree, n}
- }
- // FindLE finds the largest element N such that N <= Key, and returns the
- // iterator pointing to the element. If no such element is found,
- // returns iter.NegativeLimit().
- func (tree *RBTree) FindLE(key int) Iterator {
- n, exact := tree.findGE(key)
- if exact {
- return Iterator{tree, n}
- }
- if n != nil {
- return Iterator{tree, n.doPrev()}
- }
- if tree.maxNode == nil {
- return Iterator{tree, negativeLimitNode}
- }
- return Iterator{tree, tree.maxNode}
- }
- // Insert an item. If the item is already in the tree, do nothing and
- // return false. Else return true.
- func (tree *RBTree) Insert(item Item) (bool, Iterator) {
- // TODO: delay creating n until it is found to be inserted
- n := tree.doInsert(item)
- if n == nil {
- return false, Iterator{}
- }
- insN := n
- n.color = red
- for true {
- // Case 1: N is at the root
- if n.parent == nil {
- n.color = black
- break
- }
- // Case 2: The parent is black, so the tree already
- // satisfies the RB properties
- if n.parent.color == black {
- break
- }
- // Case 3: parent and uncle are both red.
- // Then paint both black and make grandparent red.
- grandparent := n.parent.parent
- var uncle *node
- if n.parent.isLeftChild() {
- uncle = grandparent.right
- } else {
- uncle = grandparent.left
- }
- if uncle != nil && uncle.color == red {
- n.parent.color = black
- uncle.color = black
- grandparent.color = red
- n = grandparent
- continue
- }
- // Case 4: parent is red, uncle is black (1)
- if n.isRightChild() && n.parent.isLeftChild() {
- tree.rotateLeft(n.parent)
- n = n.left
- continue
- }
- if n.isLeftChild() && n.parent.isRightChild() {
- tree.rotateRight(n.parent)
- n = n.right
- continue
- }
- // Case 5: parent is read, uncle is black (2)
- n.parent.color = black
- grandparent.color = red
- if n.isLeftChild() {
- tree.rotateRight(grandparent)
- } else {
- tree.rotateLeft(grandparent)
- }
- break
- }
- return true, Iterator{tree, insN}
- }
- // DeleteWithKey deletes an item with the given Key. Returns true iff the item was
- // found.
- func (tree *RBTree) DeleteWithKey(key int) bool {
- iter := tree.FindGE(key)
- if iter.node != nil {
- tree.DeleteWithIterator(iter)
- return true
- }
- return false
- }
- // DeleteWithIterator deletes the current item.
- //
- // REQUIRES: !iter.Limit() && !iter.NegativeLimit()
- func (tree *RBTree) DeleteWithIterator(iter Iterator) {
- doAssert(!iter.Limit() && !iter.NegativeLimit())
- tree.doDelete(iter.node)
- }
- // Iterator allows scanning tree elements in sort order.
- //
- // Iterator invalidation rule is the same as C++ std::map<>'s. That
- // is, if you delete the element that an iterator points to, the
- // iterator becomes invalid. For other operation types, the iterator
- // remains valid.
- type Iterator struct {
- tree *RBTree
- node *node
- }
- // Equal checks for the underlying nodes equality.
- func (iter Iterator) Equal(other Iterator) bool {
- return iter.node == other.node
- }
- // Limit checks if the iterator points beyond the max element in the tree.
- func (iter Iterator) Limit() bool {
- return iter.node == nil
- }
- // Min checks if the iterator points to the minimum element in the tree.
- func (iter Iterator) Min() bool {
- return iter.node == iter.tree.minNode
- }
- // Max checks if the iterator points to the maximum element in the tree.
- func (iter Iterator) Max() bool {
- return iter.node == iter.tree.maxNode
- }
- // NegativeLimit checks if the iterator points before the minimum element in the tree.
- func (iter Iterator) NegativeLimit() bool {
- return iter.node == negativeLimitNode
- }
- // Item returns the current element. Allows mutating the node
- // (key to be changed with care!).
- //
- // REQUIRES: !iter.Limit() && !iter.NegativeLimit()
- func (iter Iterator) Item() *Item {
- if iter.Limit() || iter.NegativeLimit() {
- return nil
- }
- return &iter.node.item
- }
- // Next creates a new iterator that points to the successor of the current element.
- //
- // REQUIRES: !iter.Limit()
- func (iter Iterator) Next() Iterator {
- doAssert(!iter.Limit())
- if iter.NegativeLimit() {
- return Iterator{iter.tree, iter.tree.minNode}
- }
- return Iterator{iter.tree, iter.node.doNext()}
- }
- // Prev creates a new iterator that points to the predecessor of the current
- // node.
- //
- // REQUIRES: !iter.NegativeLimit()
- func (iter Iterator) Prev() Iterator {
- doAssert(!iter.NegativeLimit())
- if !iter.Limit() {
- return Iterator{iter.tree, iter.node.doPrev()}
- }
- if iter.tree.maxNode == nil {
- return Iterator{iter.tree, negativeLimitNode}
- }
- return Iterator{iter.tree, iter.tree.maxNode}
- }
- func doAssert(b bool) {
- if !b {
- panic("rbtree internal assertion failed")
- }
- }
- const red = iota
- const black = 1 + iota
- type node struct {
- item Item
- parent, left, right *node
- color int // black or red
- }
- var negativeLimitNode *node
- //
- // Internal node attribute accessors
- //
- func getColor(n *node) int {
- if n == nil {
- return black
- }
- return n.color
- }
- func (n *node) isLeftChild() bool {
- return n == n.parent.left
- }
- func (n *node) isRightChild() bool {
- return n == n.parent.right
- }
- func (n *node) sibling() *node {
- doAssert(n.parent != nil)
- if n.isLeftChild() {
- return n.parent.right
- }
- return n.parent.left
- }
- // Return the minimum node that's larger than N. Return nil if no such
- // node is found.
- func (n *node) doNext() *node {
- if n.right != nil {
- m := n.right
- for m.left != nil {
- m = m.left
- }
- return m
- }
- for n != nil {
- p := n.parent
- if p == nil {
- return nil
- }
- if n.isLeftChild() {
- return p
- }
- n = p
- }
- return nil
- }
- // Return the maximum node that's smaller than N. Return nil if no
- // such node is found.
- func (n *node) doPrev() *node {
- if n.left != nil {
- return maxPredecessor(n)
- }
- for n != nil {
- p := n.parent
- if p == nil {
- break
- }
- if n.isRightChild() {
- return p
- }
- n = p
- }
- return negativeLimitNode
- }
- // Return the predecessor of "n".
- func maxPredecessor(n *node) *node {
- doAssert(n.left != nil)
- m := n.left
- for m.right != nil {
- m = m.right
- }
- return m
- }
- //
- // Tree methods
- //
- //
- // Private methods
- //
- func (tree *RBTree) recomputeMinNode() {
- tree.minNode = tree.root
- if tree.minNode != nil {
- for tree.minNode.left != nil {
- tree.minNode = tree.minNode.left
- }
- }
- }
- func (tree *RBTree) recomputeMaxNode() {
- tree.maxNode = tree.root
- if tree.maxNode != nil {
- for tree.maxNode.right != nil {
- tree.maxNode = tree.maxNode.right
- }
- }
- }
- func (tree *RBTree) maybeSetMinNode(n *node) {
- if tree.minNode == nil {
- tree.minNode = n
- tree.maxNode = n
- } else if n.item.Key < tree.minNode.item.Key {
- tree.minNode = n
- }
- }
- func (tree *RBTree) maybeSetMaxNode(n *node) {
- if tree.maxNode == nil {
- tree.minNode = n
- tree.maxNode = n
- } else if n.item.Key > tree.maxNode.item.Key {
- tree.maxNode = n
- }
- }
- // Try inserting "item" into the tree. Return nil if the item is
- // already in the tree. Otherwise return a new (leaf) node.
- func (tree *RBTree) doInsert(item Item) *node {
- if tree.root == nil {
- n := &node{item: item}
- tree.root = n
- tree.minNode = n
- tree.maxNode = n
- tree.count++
- return n
- }
- parent := tree.root
- for true {
- comp := item.Key - parent.item.Key
- if comp == 0 {
- return nil
- } else if comp < 0 {
- if parent.left == nil {
- n := &node{item: item, parent: parent}
- parent.left = n
- tree.count++
- tree.maybeSetMinNode(n)
- return n
- }
- parent = parent.left
- } else {
- if parent.right == nil {
- n := &node{item: item, parent: parent}
- parent.right = n
- tree.count++
- tree.maybeSetMaxNode(n)
- return n
- }
- parent = parent.right
- }
- }
- panic("should not reach here")
- }
- // Find a node whose item >= Key. The 2nd return Value is true iff the
- // node.item==Key. Returns (nil, false) if all nodes in the tree are <
- // Key.
- func (tree *RBTree) findGE(key int) (*node, bool) {
- n := tree.root
- for true {
- if n == nil {
- return nil, false
- }
- comp := key - n.item.Key
- if comp == 0 {
- return n, true
- } else if comp < 0 {
- if n.left != nil {
- n = n.left
- } else {
- return n, false
- }
- } else {
- if n.right != nil {
- n = n.right
- } else {
- succ := n.doNext()
- if succ == nil {
- return nil, false
- }
- return succ, key == succ.item.Key
- }
- }
- }
- panic("should not reach here")
- }
- // Delete N from the tree.
- func (tree *RBTree) doDelete(n *node) {
- if n.left != nil && n.right != nil {
- pred := maxPredecessor(n)
- tree.swapNodes(n, pred)
- }
- doAssert(n.left == nil || n.right == nil)
- child := n.right
- if child == nil {
- child = n.left
- }
- if n.color == black {
- n.color = getColor(child)
- tree.deleteCase1(n)
- }
- tree.replaceNode(n, child)
- if n.parent == nil && child != nil {
- child.color = black
- }
- tree.count--
- if tree.count == 0 {
- tree.minNode = nil
- tree.maxNode = nil
- } else {
- if tree.minNode == n {
- tree.recomputeMinNode()
- }
- if tree.maxNode == n {
- tree.recomputeMaxNode()
- }
- }
- }
- // Move n to the pred's place, and vice versa
- //
- func (tree *RBTree) swapNodes(n, pred *node) {
- doAssert(pred != n)
- isLeft := pred.isLeftChild()
- tmp := *pred
- tree.replaceNode(n, pred)
- pred.color = n.color
- if tmp.parent == n {
- // swap the positions of n and pred
- if isLeft {
- pred.left = n
- pred.right = n.right
- if pred.right != nil {
- pred.right.parent = pred
- }
- } else {
- pred.left = n.left
- if pred.left != nil {
- pred.left.parent = pred
- }
- pred.right = n
- }
- n.item = tmp.item
- n.parent = pred
- n.left = tmp.left
- if n.left != nil {
- n.left.parent = n
- }
- n.right = tmp.right
- if n.right != nil {
- n.right.parent = n
- }
- } else {
- pred.left = n.left
- if pred.left != nil {
- pred.left.parent = pred
- }
- pred.right = n.right
- if pred.right != nil {
- pred.right.parent = pred
- }
- if isLeft {
- tmp.parent.left = n
- } else {
- tmp.parent.right = n
- }
- n.item = tmp.item
- n.parent = tmp.parent
- n.left = tmp.left
- if n.left != nil {
- n.left.parent = n
- }
- n.right = tmp.right
- if n.right != nil {
- n.right.parent = n
- }
- }
- n.color = tmp.color
- }
- func (tree *RBTree) deleteCase1(n *node) {
- for true {
- if n.parent != nil {
- if getColor(n.sibling()) == red {
- n.parent.color = red
- n.sibling().color = black
- if n == n.parent.left {
- tree.rotateLeft(n.parent)
- } else {
- tree.rotateRight(n.parent)
- }
- }
- if getColor(n.parent) == black &&
- getColor(n.sibling()) == black &&
- getColor(n.sibling().left) == black &&
- getColor(n.sibling().right) == black {
- n.sibling().color = red
- n = n.parent
- continue
- } else {
- // case 4
- if getColor(n.parent) == red &&
- getColor(n.sibling()) == black &&
- getColor(n.sibling().left) == black &&
- getColor(n.sibling().right) == black {
- n.sibling().color = red
- n.parent.color = black
- } else {
- tree.deleteCase5(n)
- }
- }
- }
- break
- }
- }
- func (tree *RBTree) deleteCase5(n *node) {
- if n == n.parent.left &&
- getColor(n.sibling()) == black &&
- getColor(n.sibling().left) == red &&
- getColor(n.sibling().right) == black {
- n.sibling().color = red
- n.sibling().left.color = black
- tree.rotateRight(n.sibling())
- } else if n == n.parent.right &&
- getColor(n.sibling()) == black &&
- getColor(n.sibling().right) == red &&
- getColor(n.sibling().left) == black {
- n.sibling().color = red
- n.sibling().right.color = black
- tree.rotateLeft(n.sibling())
- }
- // case 6
- n.sibling().color = getColor(n.parent)
- n.parent.color = black
- if n == n.parent.left {
- doAssert(getColor(n.sibling().right) == red)
- n.sibling().right.color = black
- tree.rotateLeft(n.parent)
- } else {
- doAssert(getColor(n.sibling().left) == red)
- n.sibling().left.color = black
- tree.rotateRight(n.parent)
- }
- }
- func (tree *RBTree) replaceNode(oldn, newn *node) {
- if oldn.parent == nil {
- tree.root = newn
- } else {
- if oldn == oldn.parent.left {
- oldn.parent.left = newn
- } else {
- oldn.parent.right = newn
- }
- }
- if newn != nil {
- newn.parent = oldn.parent
- }
- }
- /*
- X Y
- A Y => X C
- B C A B
- */
- func (tree *RBTree) rotateLeft(x *node) {
- y := x.right
- x.right = y.left
- if y.left != nil {
- y.left.parent = x
- }
- y.parent = x.parent
- if x.parent == nil {
- tree.root = y
- } else {
- if x.isLeftChild() {
- x.parent.left = y
- } else {
- x.parent.right = y
- }
- }
- y.left = x
- x.parent = y
- }
- /*
- Y X
- X C => A Y
- A B B C
- */
- func (tree *RBTree) rotateRight(y *node) {
- x := y.left
- // Move "B"
- y.left = x.right
- if x.right != nil {
- x.right.parent = y
- }
- x.parent = y.parent
- if y.parent == nil {
- tree.root = x
- } else {
- if y.isLeftChild() {
- y.parent.left = x
- } else {
- y.parent.right = x
- }
- }
- x.right = y
- y.parent = x
- }
- func init() {
- negativeLimitNode = &node{}
- }
|