123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- from datetime import datetime, timedelta
- import numpy
- from labours.plotting import apply_plot_style, deploy_plot, get_plot_path, import_pyplot
- from labours.utils import parse_date
- def show_sentiment_stats(args, name, resample, start_date, data):
- from scipy.signal import convolve, slepian
- matplotlib, pyplot = import_pyplot(args.backend, args.style)
- start_date = datetime.fromtimestamp(start_date)
- data = sorted(data.items())
- mood = numpy.zeros(data[-1][0] + 1, dtype=numpy.float32)
- timeline = numpy.array(
- [start_date + timedelta(days=i) for i in range(mood.shape[0])]
- )
- for d, val in data:
- mood[d] = (0.5 - val.Value) * 2
- resolution = 32
- window = slepian(len(timeline) // resolution, 0.5)
- window /= window.sum()
- mood_smooth = convolve(mood, window, "same")
- pos = mood_smooth.copy()
- pos[pos < 0] = 0
- neg = mood_smooth.copy()
- neg[neg >= 0] = 0
- resolution = 4
- window = numpy.ones(len(timeline) // resolution)
- window /= window.sum()
- avg = convolve(mood, window, "same")
- pyplot.fill_between(timeline, pos, color="#8DB843", label="Positive")
- pyplot.fill_between(timeline, neg, color="#E14C35", label="Negative")
- pyplot.plot(timeline, avg, color="grey", label="Average", linewidth=5)
- legend = pyplot.legend(loc=1, fontsize=args.font_size)
- pyplot.ylabel("Comment sentiment")
- pyplot.xlabel("Time")
- apply_plot_style(
- pyplot.gcf(), pyplot.gca(), legend, args.background, args.font_size, args.size
- )
- pyplot.xlim(
- parse_date(args.start_date, timeline[0]),
- parse_date(args.end_date, timeline[-1]),
- )
- locator = pyplot.gca().xaxis.get_major_locator()
- # set the optimal xticks locator
- if "M" not in resample:
- pyplot.gca().xaxis.set_major_locator(matplotlib.dates.YearLocator())
- locs = pyplot.gca().get_xticks().tolist()
- if len(locs) >= 16:
- pyplot.gca().xaxis.set_major_locator(matplotlib.dates.YearLocator())
- locs = pyplot.gca().get_xticks().tolist()
- if len(locs) >= 16:
- pyplot.gca().xaxis.set_major_locator(locator)
- if locs[0] < pyplot.xlim()[0]:
- del locs[0]
- endindex = -1
- if len(locs) >= 2 and pyplot.xlim()[1] - locs[-1] > (locs[-1] - locs[-2]) / 2:
- locs.append(pyplot.xlim()[1])
- endindex = len(locs) - 1
- startindex = -1
- if len(locs) >= 2 and locs[0] - pyplot.xlim()[0] > (locs[1] - locs[0]) / 2:
- locs.append(pyplot.xlim()[0])
- startindex = len(locs) - 1
- pyplot.gca().set_xticks(locs)
- # hacking time!
- labels = pyplot.gca().get_xticklabels()
- if startindex >= 0:
- labels[startindex].set_text(timeline[0].date())
- labels[startindex].set_text = lambda _: None
- labels[startindex].set_rotation(30)
- labels[startindex].set_ha("right")
- if endindex >= 0:
- labels[endindex].set_text(timeline[-1].date())
- labels[endindex].set_text = lambda _: None
- labels[endindex].set_rotation(30)
- labels[endindex].set_ha("right")
- overall_pos = sum(2 * (0.5 - d[1].Value) for d in data if d[1].Value < 0.5)
- overall_neg = sum(2 * (d[1].Value - 0.5) for d in data if d[1].Value > 0.5)
- title = "%s sentiment +%.1f -%.1f δ=%.1f" % (
- name,
- overall_pos,
- overall_neg,
- overall_pos - overall_neg,
- )
- if args.mode == "all" and args.output:
- output = get_plot_path(args.output, "sentiment")
- else:
- output = args.output
- deploy_plot(title, output, args.background)
|