123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- import argparse
- from datetime import datetime, timedelta
- import sys
- import warnings
- import numpy
- if sys.version_info[0] < 3:
- # OK, ancients, I will support Python 2, but you owe me a beer
- input = raw_input
- def parse_args():
- parser = argparse.ArgumentParser()
- parser.add_argument("--output", default="",
- help="Path to the output file (empty for display).")
- parser.add_argument("--text-size", default=12,
- help="Size of the labels and legend.")
- parser.add_argument("--backend", help="Matplotlib backend to use.")
- parser.add_argument("--style", choices=["black", "white"], default="black",
- help="Plot's general color scheme.")
- parser.add_argument("--relative", action="store_true",
- help="Occupy 100% height for every measurement.")
- parser.add_argument(
- "--resample", default="year",
- help="The way to resample the time series. Possible values are: "
- "\"month\", \"year\", \"no\", \"raw\" and pandas offset aliases ("
- "http://pandas.pydata.org/pandas-docs/stable/timeseries.html"
- "#offset-aliases).")
- args = parser.parse_args()
- return args
- def main():
- args = parse_args()
- import matplotlib
- if args.backend:
- matplotlib.use(args.backend)
- import matplotlib.pyplot as pyplot
- import pandas
- start, granularity, sampling = input().split()
- start = datetime.fromtimestamp(int(start))
- granularity = int(granularity)
- sampling = int(sampling)
- matrix = numpy.array([numpy.fromstring(line, dtype=int, sep=" ")
- for line in sys.stdin.read().split("\n")[:-1]]).T
- date_range_sampling = pandas.date_range(
- start + timedelta(days=sampling), periods=matrix.shape[1],
- freq="%dD" % sampling)
- if args.resample not in ("no", "raw"):
- aliases = {
- "year": "A",
- "month": "M"
- }
- args.resample = aliases.get(args.resample, args.resample)
- daily_matrix = numpy.zeros(
- (matrix.shape[0] * granularity, matrix.shape[1]),
- dtype=numpy.float32)
- daily_start = 1 if "M" in args.resample else 0
- for i in range(daily_start, matrix.shape[0]):
- daily_matrix[i * granularity:(i + 1) * granularity] = \
- matrix[i] / granularity
- date_range_granularity = pandas.date_range(
- start, periods=daily_matrix.shape[0], freq="1D")
- df = pandas.DataFrame({
- dr: pandas.Series(row, index=date_range_sampling)
- for dr, row in zip(date_range_granularity, daily_matrix)
- }).T
- df = df.resample(args.resample).sum()
- if "M" in args.resample:
- row0 = matrix[0]
- matrix = df.as_matrix()
- if "M" in args.resample:
- matrix[0] = row0
- for i in range(1, min(*matrix.shape)):
- matrix[i, i] += matrix[i, :i].sum()
- matrix[i, :i] = 0
- if args.resample in ("year", "A"):
- labels = [dt.year for dt in df.index]
- elif args.resample in ("month", "M"):
- labels = [dt.strftime("%Y %B") for dt in df.index]
- else:
- labels = [dt.date() for dt in df.index]
- else:
- labels = [
- "%s - %s" % ((start + timedelta(days=i * granularity)).date(),
- (start + timedelta(days=(i + 1) * granularity)).date())
- for i in range(matrix.shape[0])]
- if len(labels) > 18:
- warnings.warn("Too many labels - consider resampling.")
- args.resample = "M"
- if args.style == "white":
- pyplot.gca().spines["bottom"].set_color("white")
- pyplot.gca().spines["top"].set_color("white")
- pyplot.gca().spines["left"].set_color("white")
- pyplot.gca().spines["right"].set_color("white")
- pyplot.gca().xaxis.label.set_color("white")
- pyplot.gca().yaxis.label.set_color("white")
- pyplot.gca().tick_params(axis="x", colors="white")
- pyplot.gca().tick_params(axis="y", colors="white")
- if args.relative:
- for i in range(matrix.shape[1]):
- matrix[:, i] /= matrix[:, i].sum()
- pyplot.ylim(0, 1)
- legend_loc = 3
- else:
- legend_loc = 2
- pyplot.stackplot(date_range_sampling, matrix, labels=labels)
- legend = pyplot.legend(loc=legend_loc, fontsize=args.text_size)
- frame = legend.get_frame()
- frame.set_facecolor("black" if args.style == "white" else "white")
- frame.set_edgecolor("black" if args.style == "white" else "white")
- for text in legend.get_texts():
- text.set_color(args.style)
- pyplot.ylabel("Lines of code", fontsize=args.text_size)
- pyplot.xlabel("Time", fontsize=args.text_size)
- pyplot.tick_params(labelsize=args.text_size)
- pyplot.xlim(date_range_sampling[0], date_range_sampling[-1])
- pyplot.gcf().set_size_inches(12, 9)
- locator = pyplot.gca().xaxis.get_major_locator()
- # set the optimal xticks locator
- if "M" not in args.resample:
- pyplot.gca().xaxis.set_major_locator(matplotlib.dates.YearLocator())
- locs = pyplot.gca().get_xticks().tolist()
- if len(locs) >= 16:
- pyplot.gca().xaxis.set_major_locator(matplotlib.dates.YearLocator())
- locs = pyplot.gca().get_xticks().tolist()
- if len(locs) >= 16:
- pyplot.gca().xaxis.set_major_locator(locator)
- if locs[0] < pyplot.xlim()[0]:
- del locs[0]
- endindex = -1
- if len(locs) >= 2 and \
- pyplot.xlim()[1] - locs[-1] >= (locs[-1] - locs[-2]) / 2:
- locs.append(pyplot.xlim()[1])
- endindex = len(locs) - 1
- startindex = -1
- if len(locs) >= 2 and \
- locs[0] - pyplot.xlim()[0] >= (locs[1] - locs[0]) / 2:
- locs.append(pyplot.xlim()[0])
- startindex = len(locs) - 1
- pyplot.gca().set_xticks(locs)
- # hacking time!
- labels = pyplot.gca().get_xticklabels()
- if startindex >= 0:
- if "M" in args.resample:
- labels[startindex].set_text(date_range_sampling[0].date())
- labels[startindex].set_text = lambda _: None
- labels[startindex].set_rotation(30)
- labels[startindex].set_ha("right")
- if endindex >= 0:
- if "M" in args.resample:
- labels[endindex].set_text(date_range_sampling[-1].date())
- labels[endindex].set_text = lambda _: None
- labels[endindex].set_rotation(30)
- labels[endindex].set_ha("right")
- if not args.output:
- pyplot.gcf().canvas.set_window_title(
- "Hercules %d x %d (granularity %d, sampling %d)" %
- (matrix.shape + (granularity, sampling)))
- pyplot.show()
- else:
- pyplot.tight_layout()
- pyplot.savefig(args.output, transparent=True)
- if __name__ == "__main__":
- sys.exit(main())
|