瀏覽代碼

Removing unused files

Marc Garcia 6 年之前
父節點
當前提交
3e0703bf33
共有 4 個文件被更改,包括 0 次插入204 次删除
  1. 0 32
      00_Empty.ipynb
  2. 0 172
      03_Loading_and_merging.ipynb
  3. 二進制
      data/cities1000.zip
  4. 二進制
      data/countries.json.gz

+ 0 - 32
00_Empty.ipynb

@@ -1,32 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.3"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}

+ 0 - 172
03_Loading_and_merging.ipynb

@@ -1,172 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Tutorial: Part 3 - Loading and merging data\n",
-    "\n",
-    "![](img/earth.jpg)\n",
-    "\n",
-    "## GeoNames dataset\n",
-    "\n",
-    "Dataset source: http://download.geonames.org/export/dump/\n",
-    "\n",
-    "Features:\n",
-    "- **geonameid:** integer id of record in geonames database\n",
-    "- **name:** name of geographical point (utf8) varchar(200)\n",
-    "- **asciiname:** name of geographical point in plain ascii characters, varchar(200)\n",
-    "- **alternatenames:** alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)\n",
-    "- **latitude:** latitude in decimal degrees (wgs84)\n",
-    "- **longitude:** longitude in decimal degrees (wgs84)\n",
-    "- **feature class:** see http://www.geonames.org/export/codes.html, char(1)\n",
-    "- **feature code:** see http://www.geonames.org/export/codes.html, varchar(10)\n",
-    "- **country code:** ISO-3166 2-letter country code, 2 characters\n",
-    "- **cc2:** alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters\n",
-    "- **admin1 code:** fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)\n",
-    "- **admin2 code:** code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80) \n",
-    "- **admin3 code:** code for third level administrative division, varchar(20)\n",
-    "- **admin4 code:** code for fourth level administrative division, varchar(20)\n",
-    "- **population:** bigint (8 byte int) \n",
-    "- **elevation:** in meters, integer\n",
-    "- **dem:** digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.\n",
-    "- **timezone:** the iana timezone id (see file timeZone.txt) varchar(40)\n",
-    "- **modification date:** date of last modification in yyyy-MM-dd format"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import pandas\n",
-    "\n",
-    "cities = pandas.read_csv('data/cities1000.zip',\n",
-    "                         sep='\\t',\n",
-    "                         names=['geonameid', 'name', 'asciiname', 'alternatenames',\n",
-    "                                'latitude', 'longitude', 'feature class',\n",
-    "                                'feature code', 'country code', 'cc2',\n",
-    "                                'admin1 code', 'admin2 code', 'admin3 code', 'admin4 code',\n",
-    "                                'population', 'elevation', 'dem', 'timezone', 'modification date'],\n",
-    "                         index_col='geonameid',\n",
-    "                         parse_dates=['modification date'],\n",
-    "                         low_memory=False)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<div class=\"alert alert-success\">\n",
-    "    <p><b>EXERCICE:</b> Explore the dataset</p>\n",
-    "    <p>Tasks:\n",
-    "        <ul>\n",
-    "            <li>Visualize the first rows.</li>\n",
-    "            <li>Check if there are missing values.</li>\n",
-    "            <li>Plot the distribution of the <code>population</code>.</li>\n",
-    "        </ul>\n",
-    "    </p>\n",
-    "    <p>Hints:\n",
-    "        <ul>\n",
-    "            <li>You can change the number of rows to visualize in <code>.head()</code> providing a number (e.g. <code>.head(3)</code></li>\n",
-    "            <li>You can see the number of non-null with <code>.info()</code> but also with <code>.nonull().sum()</code></li>\n",
-    "            <li>When you display data with many columns and few rows, you can use <code>.T</code> to transpose it.</li>\n",
-    "            <li>You can visualize a distribution with <code>.boxplot()</code> and also with <code>.hist</code></li>\n",
-    "        </ul>\n",
-    "    </p>\n",
-    "</div>"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cities.info()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cities.nlargest(n=5, columns='population')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cities.nlargest(n=20, columns='elevation')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "https://github.com/mledoze/countries"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "countries = pandas.read_json('data/countries.json.gz')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "countries.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "pandas.read_table('http://download.geonames.org/export/dump/featureCodes_en.txt',\n",
-    "                  names=('code', 'name', 'description'), index_col='code')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}

二進制
data/cities1000.zip


二進制
data/countries.json.gz