# Documents Similarity using NLTK and Gensim library import gensim import nltk from nltk.tokenize import word_tokenize raw_documents = ["I'm taking the show on the road.", "My socks are a force multiplier.", "I am the barber who cuts everyone's hair who doesn't cut their own.", "Legend has it that the mind is a mad monkey.", "I make my own fun."] print("Number of documents:",len(raw_documents)) gen_docs = [[w.lower() for w in word_tokenize(text)] for text in raw_documents] print(gen_docs) dictionary = gensim.corpora.Dictionary(gen_docs) print(dictionary[5]) print(dictionary.token2id['road']) print("Number of words in dictionary:",len(dictionary)) for i in range(len(dictionary)): print(i, dictionary[i]) corpus = [dictionary.doc2bow(gen_doc) for gen_doc in gen_docs] print(corpus) tf_idf = gensim.models.TfidfModel(corpus) print(tf_idf) s = 0 for i in corpus: s += len(i) print(s) sims = gensim.similarities.Similarity('workdir/',tf_idf[corpus], num_features=len(dictionary)) print(sims) print(type(sims)) query_doc = [w.lower() for w in word_tokenize("Socks are a force for good.")] print(query_doc) query_doc_bow = dictionary.doc2bow(query_doc) print(query_doc_bow) query_doc_tf_idf = tf_idf[query_doc_bow] print(query_doc_tf_idf) print(sims[query_doc_tf_idf])