from .string_distance import NormalizedStringDistance class NGram(NormalizedStringDistance): def __init__(self, n=2): self.n = n def distance(self, s0, s1): if s0 is None: raise TypeError("Argument s0 is NoneType.") if s1 is None: raise TypeError("Argument s1 is NoneType.") if s0 == s1: return 0.0 special = '\n' sl = len(s0) tl = len(s1) if sl == 0 or tl == 0: return 1.0 cost = 0 if sl < self.n or tl < self.n: for i in range(min(sl, tl)): if s0[i] == s1[i]: cost += 1 return 1.0 * cost / max(sl, tl) sa = [''] * (sl + self.n - 1) for i in range(len(sa)): if i < self.n - 1: sa[i] = special else: sa[i] = s0[i - self.n + 1] p = [0.0] * (sl + 1) d = [0.0] * (sl + 1) t_j = [''] * self.n for i in range(sl + 1): p[i] = 1.0 * i for j in range(1, tl + 1): if j < self.n: for ti in range(self.n - j): t_j[ti] = special for ti in range(self.n - j, self.n): t_j[ti] = s1[ti - (self.n - j)] else: t_j = s1[j - self.n:j] d[0] = 1.0 * j for i in range(sl + 1): cost = 0 tn = self.n for ni in range(self.n): if sa[i - 1 + ni] != t_j[ni]: cost += 1 elif sa[i - 1 + ni] == special: tn -= 1 ec = cost / tn d[i] = min(d[i - 1] + 1, p[i] + 1, p[i - 1] + ec) p, d = d, p return p[sl] / max(tl, sl)