similarity.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. # Copyright (c) 2018 luozhouyang
  2. #
  3. # Permission is hereby granted, free of charge, to any person obtaining a copy
  4. # of this software and associated documentation files (the "Software"), to deal
  5. # in the Software without restriction, including without limitation the rights
  6. # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  7. # copies of the Software, and to permit persons to whom the Software is
  8. # furnished to do so, subject to the following conditions:
  9. #
  10. # The above copyright notice and this permission notice shall be included in all
  11. # copies or substantial portions of the Software.
  12. #
  13. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14. # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15. # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  16. # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  17. # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  18. # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  19. # SOFTWARE.
  20. from enum import IntEnum
  21. from .cosine import Cosine
  22. from .damerau import Damerau
  23. from .jaccard import Jaccard
  24. from .jarowinkler import JaroWinkler
  25. from .levenshtein import Levenshtein
  26. from .longest_common_subsequence import LongestCommonSubsequence
  27. from .metric_lcs import MetricLCS
  28. from .ngram import NGram
  29. from .normalized_levenshtein import NormalizedLevenshtein
  30. from .optimal_string_alignment import OptimalStringAlignment
  31. from .qgram import QGram
  32. from .sorensen_dice import SorensenDice
  33. from .weighted_levenshtein import WeightedLevenshtein
  34. class Algorithm(IntEnum):
  35. COSINE = 1
  36. DAMERAU = 2
  37. JACCARD = 3
  38. JARO_WINKLE = 4
  39. LEVENSHTEIN = 5
  40. LCS = 6
  41. METRIC_LCS = 7
  42. N_GRAM = 8
  43. NORMALIZED_LEVENSHTEIN = 9
  44. OPTIMAL_STRING_ALIGNMENT = 10
  45. Q_GRAM = 11
  46. SORENSEN_DICE = 12
  47. WEIGHTED_LEVENSHTEIN = 13
  48. class Factory:
  49. @staticmethod
  50. def get_algorithm(algorithm: Algorithm, k=3):
  51. if algorithm == Algorithm.COSINE:
  52. return Cosine(k)
  53. elif algorithm == Algorithm.DAMERAU:
  54. return Damerau()
  55. elif algorithm == Algorithm.JACCARD:
  56. return Jaccard(k)
  57. elif algorithm == Algorithm.JARO_WINKLE:
  58. return JaroWinkler()
  59. elif algorithm == Algorithm.LEVENSHTEIN:
  60. return Levenshtein()
  61. elif algorithm == Algorithm.LCS:
  62. return LongestCommonSubsequence()
  63. elif algorithm == Algorithm.METRIC_LCS:
  64. return MetricLCS()
  65. elif algorithm == Algorithm.N_GRAM:
  66. return NGram()
  67. elif algorithm == Algorithm.NORMALIZED_LEVENSHTEIN:
  68. return NormalizedLevenshtein()
  69. elif algorithm == Algorithm.OPTIMAL_STRING_ALIGNMENT:
  70. return OptimalStringAlignment()
  71. elif algorithm == Algorithm.Q_GRAM:
  72. return QGram()
  73. elif algorithm == Algorithm.SORENSEN_DICE:
  74. return SorensenDice(k)
  75. elif algorithm == Algorithm.WEIGHTED_LEVENSHTEIN:
  76. raise TypeError("This method does not support create weighted_levenshtein algorithm.")
  77. else:
  78. return Cosine(k)
  79. @staticmethod
  80. def get_weighted_levenshtein(char_sub, char_change):
  81. return WeightedLevenshtein(char_sub, char_change)
  82. if __name__ == "__main__":
  83. a = Factory().get_algorithm(Algorithm.LEVENSHTEIN)
  84. distance_format = "distance: {:.4} between {} and {}"
  85. s0 = "你好"
  86. s1 = "你好啊"
  87. print(distance_format.format(str(a.distance(s0, s1)), s0, s1))