1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) 2018 luozhouyang
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in all
- # copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- import math
- from .shingle_based import ShingleBased
- from .string_distance import NormalizedStringDistance
- from .string_similarity import NormalizedStringSimilarity
- class Cosine(ShingleBased, NormalizedStringDistance,
- NormalizedStringSimilarity):
- def __init__(self, k):
- super().__init__(k)
- def distance(self, s0, s1):
- return 1.0 - self.similarity(s0, s1)
- def similarity(self, s0, s1):
- if s0 is None:
- raise TypeError("Argument s0 is NoneType.")
- if s1 is None:
- raise TypeError("Argument s1 is NoneType.")
- if s0 == s1:
- return 1.0
- if len(s0) < self.get_k() or len(s1) < self.get_k():
- return 0.0
- profile0 = self.get_profile(s0)
- profile1 = self.get_profile(s1)
- return self._dot_product(profile0, profile1) / (self._norm(profile0) * self._norm(profile1))
- def similarity_profiles(self, profile0, profile1):
- return self._dot_product(profile0, profile1) / (self._norm(profile0) * self._norm(profile1))
- @staticmethod
- def _dot_product(profile0, profile1):
- small = profile1
- large = profile0
- if len(profile0) < len(profile1):
- small = profile0
- large = profile1
- agg = 0.0
- for k, v in small.items():
- i = large.get(k)
- if not i:
- continue
- agg += 1.0 * v * i
- return agg
- @staticmethod
- def _norm(profile):
- agg = 0.0
- for k, v in profile.items():
- agg += 1.0 * v * v
- return math.sqrt(agg)
|