12345678910111213141516171819202122232425262728293031 |
- import numpy as np
- from sklearn.ensemble import VotingClassifier
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import train_test_split
- from sklearn.pipeline import make_pipeline, make_union
- from sklearn.preprocessing import FunctionTransformer, MaxAbsScaler, MinMaxScaler
- # NOTE: Make sure that the class is labeled 'class' in the data file
- tpot_data = np.recfromcsv(
- "PATH/TO/DATA/FILE", delimiter="COLUMN_SEPARATOR", dtype=np.float64
- )
- features = np.delete(
- tpot_data.view(np.float64).reshape(tpot_data.size, -1),
- tpot_data.dtype.names.index("class"),
- axis=1,
- )
- (
- training_features,
- testing_features,
- training_classes,
- testing_classes,
- ) = train_test_split(features, tpot_data["class"], random_state=42)
- exported_pipeline = make_pipeline(
- MaxAbsScaler(), MinMaxScaler(), LogisticRegression(C=49.0, dual=True, penalty="l2")
- )
- exported_pipeline.fit(training_features, training_classes)
- results = exported_pipeline.predict(testing_features)
|