test_samsum_datasets.py 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from dataclasses import dataclass
  4. from functools import partial
  5. from unittest.mock import patch
  6. import pytest
  7. from datasets import load_dataset
  8. @dataclass
  9. class Config:
  10. model_type: str = "llama"
  11. try:
  12. load_dataset("knkarthick/samsum")
  13. SAMSUM_UNAVAILABLE = False
  14. except ValueError:
  15. SAMSUM_UNAVAILABLE = True
  16. @pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable")
  17. @pytest.mark.skip_missing_tokenizer
  18. @patch("llama_cookbook.finetuning.train")
  19. @patch("llama_cookbook.finetuning.AutoTokenizer")
  20. @patch("llama_cookbook.finetuning.AutoConfig.from_pretrained")
  21. @patch("llama_cookbook.finetuning.AutoProcessor")
  22. @patch("llama_cookbook.finetuning.MllamaForConditionalGeneration.from_pretrained")
  23. @patch("llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained")
  24. @patch("llama_cookbook.finetuning.optim.AdamW")
  25. @patch("llama_cookbook.finetuning.StepLR")
  26. def test_samsum_dataset(
  27. step_lr,
  28. optimizer,
  29. get_model,
  30. get_mmodel,
  31. processor,
  32. get_config,
  33. tokenizer,
  34. train,
  35. mocker,
  36. setup_tokenizer,
  37. llama_version,
  38. ):
  39. from llama_cookbook.finetuning import main
  40. setup_tokenizer(tokenizer)
  41. get_model.return_value.get_input_embeddings.return_value.weight.shape = [
  42. 32000 if "Llama-2" in llama_version else 128256
  43. ]
  44. get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
  45. get_config.return_value = Config()
  46. BATCH_SIZE = 8
  47. kwargs = {
  48. "model_name": llama_version,
  49. "batch_size_training": BATCH_SIZE,
  50. "val_batch_size": 1,
  51. "use_peft": False,
  52. "dataset": "samsum_dataset",
  53. "batching_strategy": "padding",
  54. }
  55. main(**kwargs)
  56. assert train.call_count == 1
  57. args, kwargs = train.call_args
  58. train_dataloader = args[1]
  59. eval_dataloader = args[2]
  60. token = args[3]
  61. VAL_SAMPLES = 818
  62. TRAIN_SAMPLES = 14732
  63. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  64. assert len(eval_dataloader) == VAL_SAMPLES
  65. batch = next(iter(train_dataloader))
  66. assert "labels" in batch.keys()
  67. assert "input_ids" in batch.keys()
  68. assert "attention_mask" in batch.keys()
  69. assert batch["input_ids"][0][0] == token.bos_token_id
  70. assert batch["labels"][0][-1] == token.eos_token_id
  71. assert batch["input_ids"][0][-1] == token.eos_token_id