| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- \documentclass{beamer}
- \usetheme{metropolis}
- \usepackage{hyperref}
- \usepackage[utf8]{inputenc} % this is needed for german umlauts
- \usepackage[english]{babel} % this is needed for german umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage{tikz}
- \usetikzlibrary{arrows.meta}
- \usetikzlibrary{decorations.pathreplacing}
- \usetikzlibrary{positioning}
- \usetikzlibrary{decorations.text}
- \usetikzlibrary{decorations.pathmorphing}
- \usetikzlibrary{shapes.multipart, calc}
- \begin{document}
- \title{Convolutional Neural Networks (CNNs)}
- \subtitle{Theory and Applications}
- \author{Martin Thoma}
- \date{22. February 2019}
- \subject{Machine Learning, AI, Neural Networks, Convolutional Neural Networks}
- \frame{\titlepage}
- % \section{Neural Network Basics}
- % \subsection{}
- \begin{frame}{Artificial Neuron (Perceptron)}
- $$f: \mathbb{R}^n \rightarrow \mathbb{R}$$
- \begin{figure}[ht]
- \centering
- \includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/artificial-neuron.pdf}
- \end{figure}
- % $$f(x) = ax^2 + bx + c \text{ with } f(0) = 3, f(1) = 2, f(-1) = 6$$
- % \begin{align*}
- % \onslide<2->{f(0) &= a \cdot 0^2 + b \cdot 0 + c = 3} &\onslide<3->{\Rightarrow c &= 3\\}
- % \onslide<4->{f(1) &= a \cdot 1^2 + b \cdot 1 + 3 = 2} &\onslide<5->{\Rightarrow a &= -1-b\\}
- % \onslide<6->{f(-1) &= a \cdot {(-1)}^2 - b + 3 = 6\\}
- % \onslide<7->{\Leftrightarrow 3&=a - b\\}
- % \onslide<8->{\Leftrightarrow 3&= (-1-b) - b\\}
- % \onslide<9->{\Leftrightarrow b&= -2\\}
- % \onslide<10>{\Rightarrow \quad f(x) &= x^2 -2 x + 3\\}
- % \end{align*}
- % \only<1>{$$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$$}
- % \only<2>{$$f: \mathbb{R}^2 \rightarrow \mathbb{R}$$
- % # 2x - 1
- % # (x-1)^2 + 1
- % Examples:
- % \begin{itemize}
- % \item $1 \rightarrow 1$: $f(x) = x$
- % \item $2 \rightarrow 3$: $f(x) = $
- % % \item $3 \rightarrow 3$
- % \end{itemize}
- % }
- \end{frame}
- \begin{frame}{Multi-Layer Perceptron (MLP)}
- $$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$$
- \begin{figure}[ht]
- \centering
- \includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/perceptron-notation.pdf}
- \end{figure}
- \end{frame}
- \begin{frame}{}
- \begin{itemize}[<+->]
- \item Predict housing prices: (bed rooms, size, age) $\rightarrow$ Price
- \item Product categorization: (weight, volume, price) $\rightarrow$ \{shoe, handbag, shirt\}
- \item Image classification: List of pixel colors $\rightarrow$ \{cat, dog\}
- \end{itemize}
- \end{frame}
- \begin{frame}{}
- \begin{center}
- \Huge Data
- \end{center}
- \end{frame}
- \begin{frame}{Necessary Data}
- \begin{itemize}
- \item $f(x) = w_0$
- \item $f(x) = w_1 \cdot x + w_0$
- \item $f(x) = w_2^2 \cdot x^2 + w_1^2 \cdot x + w_0$
- \item sin, cos, tan, \dots
- \end{itemize}
- \end{frame}
- \begin{frame}{Convolution}
- \begin{figure}[ht]
- \centering
- \includegraphics[width=0.8\paperwidth]{graphics/convolution-linear.pdf}
- \end{figure}
- \end{frame}
- \begin{frame}{Convolutional Layer}
- \begin{figure}[ht]
- \centering
- \input{graphics/convolution-layer}
- \end{figure}
- \end{frame}
- \begin{frame}{Max Pooling}
- \begin{figure}[ht]
- \centering
- \includegraphics[width=0.8\paperwidth]{graphics/max-pooling.pdf}
- \end{figure}
- \end{frame}
- \section{Applications}
- \begin{frame}{Symbol recognizer}
- \begin{center}
- \href{http://write-math.com}{write-math.com}
- \end{center}
- \end{frame}
- \begin{frame}{Symbol recognizer}
- GANs
- \end{frame}
- \end{document}
|